【題目】為積極參與文明城市創(chuàng)建活動(dòng),我市某校在教學(xué)樓頂部新建了一塊大型宣傳牌,如下圖。小明同學(xué)為測量宣傳牌的高度AB,他站在距離教學(xué)樓底部E6米遠(yuǎn)的地面C處,測得宣傳牌的底部B的仰角為60°,同時(shí)測得教學(xué)樓窗戶D處的仰角為30°AB、D、E在同一直線上)。然后,小明沿坡度i=11.5的斜坡從C走到F處,此時(shí)DF正好與地面CE平行。

1)求點(diǎn)F到直線CE的距離(結(jié)果保留根號(hào));

2)若小明在F處又測得宣傳牌頂部A的仰角為45°,求宣傳牌的高度AB(結(jié)果精確到0.1米,)。

【答案】1)點(diǎn)F到地面的距離為米;(2)宣傳牌的高度約為4.3

【解析】

1))過點(diǎn)FFGECG,先證得FG=DE,再根據(jù)tan30°求出DE的長即可得到答案;

2)根據(jù)CF為坡度i=11.5的斜坡,求出CG的長,由此得到DF,再利用tan45°

解:(1)過點(diǎn)FFGECG

依題意知FGDE,DFGE,∠FGE=90°

∴四邊形DEGF是矩形;

FG=DE

RtCDE中,

DE=CEtanDCE=6tan30°=(米)

∴點(diǎn)F到地面的距離為

2)∵斜坡CF的坡度為i=1:1.5

RtCFG中,CG=1.5 FG=×1.5=,

FD=EG=+6

RtADF中,

RtBCE中,

BE=CEtanBCE=6tan60°=,

AB=AD+DE-BE

=+6+-=6- 4.3(米)

答:宣傳牌的高度約為4.3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線lymx+nm0,n0)與x、y軸分別相交于A、B兩點(diǎn),將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△COD,過點(diǎn)AB、D的拋物線P叫做l的關(guān)聯(lián)拋物線,而l叫做P的關(guān)聯(lián)直線.

1)若ly=﹣2x+2,則P表示的函數(shù)解析式為   ;若Py=﹣x23x+4,則l表示的函數(shù)解析式為   

2)求P的對稱軸(用含m、n的代數(shù)式表示);

3)如圖②,若ly=﹣2x+4,P的對稱軸與CD相交于點(diǎn)E,點(diǎn)Fl上,點(diǎn)QP的對稱軸上.當(dāng)以點(diǎn)CE,Q,F為頂點(diǎn)的四邊形是以CE為一邊的平行四邊形時(shí),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)P、D分別是BC、AC邊上的點(diǎn),且∠APD=B.

(1)求證:AC·CD=CP·BP;

(2)AB=10,BC=12,當(dāng)PDAB時(shí),求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABO的邊AB垂直于x軸,垂足為點(diǎn)B,反比例函數(shù)y(x0)的圖象經(jīng)過AO的中點(diǎn)C,交AB于點(diǎn)D,且AD3

(1)設(shè)點(diǎn)A的坐標(biāo)為(4,4)則點(diǎn)C的坐標(biāo)為   ;

(2)若點(diǎn)D的坐標(biāo)為(4,n)

求反比例函數(shù)y的表達(dá)式;

求經(jīng)過C,D兩點(diǎn)的直線所對應(yīng)的函數(shù)解析式;

(3)(2)的條件下,設(shè)點(diǎn)E是線段CD上的動(dòng)點(diǎn)(不與點(diǎn)CD重合),過點(diǎn)E且平行y軸的直線l與反比例函數(shù)的圖象交于點(diǎn)F,求△OEF面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】壓歲錢由來已久,古稱厭勝錢、壓祟錢等.鐺鐺同學(xué)在2019年春節(jié)共收到10位長輩給的壓歲錢,分別是:100元、200元、100元、50元、400元、300元、50元、100元、200元、400元.關(guān)于這組數(shù)據(jù),下列說法正確的是(

A.中位數(shù)是200B.眾數(shù)是100

C.平均數(shù)是200D.極差是300

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D、EF分別在邊AB、ACBC上,DEBC,DFAC,若△ADE與四邊形DBCE的面積相等,則△DBF與△ADE的面積之比為(  )

A. B. C. D. 3-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于O,BC=CD,C=2BAD

1)求BOD的度數(shù);

2)求證:四邊形OBCD是菱形;

3)若O的半徑為r,ODA=45°,求ABD的面積(用含r的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明利用所學(xué)數(shù)學(xué)知識(shí)測量某建筑物BC高度,采用了如下的方法:小明從與某建筑物底端B在同一水平線上的A點(diǎn)出發(fā),先沿斜坡AD行走260米至坡頂D處,再從D處沿水平方向繼續(xù)前行若干米后至點(diǎn)E處,在E點(diǎn)測得該建筑物頂端C的仰角為72°,建筑物底端B的俯角為63°,其中點(diǎn)A、BC、D、E在同一平面內(nèi),斜坡AD的坡度i=12.4,根據(jù)小明的測量數(shù)據(jù),計(jì)算得出建筑物BC的高度約為( )米(計(jì)算結(jié)果精DE確到0.1米,參考數(shù)據(jù):sin72°≈0.95,tan72°≈3.08,sin63°≈0.89tan63°≈1.96

A.157.1 B.157.4 C.257.4 D.257.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC4,BC3,點(diǎn)D是邊AC的中點(diǎn),點(diǎn)E,F在邊AB上,當(dāng)DEF是等腰三角形,且底角的正切值是時(shí),DEF腰長的值是_____

查看答案和解析>>

同步練習(xí)冊答案