如圖,拋物線y=x²+bx+c與直線y=x-1交于A、B兩點.點A的橫坐標(biāo)為-3,點B在y軸上,點P是y軸左側(cè)拋物線上的一動點,橫坐標(biāo)為m,過點P作PC⊥x軸于C,交直線AB于D.
(1)求拋物線的解析式;
(2)當(dāng)m為何值時,;
(3)是否存在點P,使△PAD是直角三角形,若存在,求出點P的坐標(biāo);若不存在,說明理由.
(1)y=x2+4x-1;(2)∴m=,-2,或-3時S四邊形OBDC=2SS△BPD
【解析】
試題分析:(1)由x=0時帶入y=x-1求出y的值求出B的坐標(biāo),當(dāng)x=-3時,代入y=x-1求出y的值就可以求出A的坐標(biāo),由待定系數(shù)法就可以求出拋物線的解析式;
(2)連結(jié)OP,由P點的橫坐標(biāo)為m可以表示出P、D的坐標(biāo),可以表示出S四邊形OBDC和2S△BPD建立方程求出其解即可.
(3)如圖2,當(dāng)∠APD=90°時,設(shè)出P點的坐標(biāo),就可以表示出D的坐標(biāo),由△APD∽△FCD就可與求出結(jié)論,如圖3,當(dāng)∠PAD=90°時,作AE⊥x軸于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性質(zhì)就可以求出結(jié)論.
試題解析:
∵y=x-1,∴x=0時,y=-1,∴B(0,-1).
當(dāng)x=-3時,y=-4,∴A(-3,-4).
∵y=x2+bx+c與直線y=x-1交于A、B兩點,∴
∴∴拋物線的解析式為:y=x2+4x-1;
(2)∵P點橫坐標(biāo)是m(m<0),∴P(m,m2+4m-1),D(m,m-1)
如圖1①,作BE⊥PC于E, ∴BE=-m.
CD=1-m,OB=1,OC=-m,CP=1-4m-m2,
∴PD=1-4m-m2-1+m=-3m-m2,
∴
解得:m1=0(舍去),m2=-2,m3=
如圖1②,作BE⊥PC于E,
∴BE=-m.
PD=1-4m-m2+1-m=2-4m-m2,
解得:m=0(舍去)或m=-3,
∴m=,-2,或-3時S四邊形OBDC=2S△BPD;
)如圖2,當(dāng)∠APD=90°時,設(shè)P(a,a2+4a-1),則D(a,a-1),
∴AP=m+4,CD=1-m,OC=-m,CP=1-4m-m2,
∴DP=1-4m-m2-1+m=-3m-m2.
在y=x-1中,當(dāng)y=0時,x=1,
∴(1,0),
∴OF=1,∴CF=1-m.AF=4
∵PC⊥x軸,
∴∠PCF=90°,
∴∠PCF=∠APD,
∴CF∥AP,
∴△APD∽△FCD,
∴
解得:m=1舍去或m=-2,∴P(-2,-5)
如圖3,當(dāng)∠PAD=90°時,作AE⊥x軸于E,
∴∠AEF=90°.CE=-3-m,EF=4,AF=4
PD=1-m-(1-4m-m2)=3m+m2.
∵PC⊥x軸,∵PC⊥x軸,
∴∠DCF=90°,
∴∠DCF=∠AEF,
∴AE∥CD.
∴AD=(-3-m)
∵△PAD∽△FEA,
∴
∴m=-2或m=-3
∴P(-2,-5)或(-3,-4)與點A重合,舍去,
∴P(-2,-5).
考點:二次函數(shù)綜合題.
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川成都卷)數(shù)學(xué)(解析版) 題型:填空題
在邊長為1的小正方形組成的方格紙中,稱小正方形的頂點為“格點”,頂點全在格點上的多邊形為“格點多邊形”.格點多邊形的面積記為S,其內(nèi)部的格點數(shù)記為N,邊界上的格點數(shù)記為L,例如,圖中的三角形ABC是格點三角形,其中S=2,N=0,L=6;圖中格點多邊形DEFGHI所對應(yīng)的S,N,L分別是 _.經(jīng)探究發(fā)現(xiàn),任意格點多邊形的面積S可表示為S=aN+bL+c,其中a,b,c為常數(shù),則當(dāng)N=5,L=14時,S= .(用數(shù)值作答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川德陽卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖是某射擊選手5次設(shè)計成績的折線圖,根據(jù)圖示信息,這5次成績的眾數(shù)、中位數(shù)分別是( 。
A.7、8 B.7、9 C.8、9 D.8、10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川宜賓卷)數(shù)學(xué)(解析版) 題型:填空題
菱形的周長為20cm,兩個相鄰的內(nèi)角的度數(shù)之比為1:2,則較長的對角線長度是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川宜賓卷)數(shù)學(xué)(解析版) 題型:選擇題
若關(guān)于x的一元二次方程的兩個根為x1=1,x2=2,則這個方程是( )
A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川南充卷)數(shù)學(xué)(解析版) 題型:解答題
已知關(guān)于x的一元二次方程x2-2x+m=0,有兩個不相等的實數(shù)根.
⑴求實數(shù)m的最大整數(shù)值;
⑵在⑴的條下,方程的實數(shù)根是x1,x2,求代數(shù)式x12+x22-x1x2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川南充卷)數(shù)學(xué)(解析版) 題型:填空題
一組數(shù)據(jù)按從小到大的順序排列為1,2,3,,4,5,若這組數(shù)據(jù)的中位數(shù)為3,則這組數(shù)據(jù)的方差是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川內(nèi)江卷)數(shù)學(xué)(解析版) 題型:填空題
已知實數(shù)x、y滿足2x﹣3y=4,并且x≥﹣1,y<2,現(xiàn)有k=x﹣y,則k的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com