如圖,在菱形ABCD中,E是對角線AC上一點,若AE=BE=2,AD=3,則CE=   
【答案】分析:先連接BD,交AC于O點,根據(jù)菱形的對角線互相垂直且平分的性質(zhì).可知BD⊥AC,AO=OC.根據(jù)直角三角形勾股定理,則AB2-AO2=BO2=BE2-EO2.可設(shè)EO為x,那么AO=AE+EO,從而求出x的值,而CE=OE+OC,可以求得CE.
解答:解:連接BD,交AC于O點,設(shè)EO=x
因為菱形ABCD,∴AD=AB,BD⊥AC,AO=OC
在直角三角形△ABO和△EBO中,根據(jù)勾股定理
∴AB2-AO2=BO2=BE2-EO2
∵AE=BE=2,AD=3
∴3×3-(2+x)2=2×2-x2
求得x=,
∴CE=OC+EO=OA+EO=2+x+x=
故CE=
故答案為
點評:本題主要利用菱形的對角線互相垂直平分及勾股定理來解決.是常考的內(nèi)容.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在菱形ABCD中,AC=6,BD=8,則菱形的邊長為( 。
A、5B、10C、6D、8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在菱形ABCD中,∠ABC=60°,E為AB邊的中點,P為對角線BD上任意一點,AB=4,則PE+PA的最小值為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為
1
1
時,四邊形AMDN是矩形;
           ②當(dāng)AM的值為
2
2
時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•攀枝花)如圖,在菱形ABCD中,DE⊥AB于點E,cosA=
35
,BE=4,則tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在菱形ABCD中,AE⊥BC,垂足為F,EC=1,∠B=30°,求菱形ABCD的周長.

查看答案和解析>>

同步練習(xí)冊答案