【題目】如圖,上、下底面為全等的正六邊形禮盒,其主視圖與左視圖均由矩形構(gòu)成,主視圖中大矩形邊長如圖所示,左視圖中包含兩個全等的矩形,如果用彩色膠帶按如圖所示的方式包扎禮盒,那么所需膠帶長度至少為多少厘米?(結(jié)果精確到1 cm)

【答案】432cm

【解析】分析:由主視圖知道,高是20 cm,兩頂點之間的最大距離為60 cm,應(yīng)利用正六邊形的性質(zhì)求得底面對邊之間的距離,然后所有棱長相加即可.

本題解析:

根據(jù)題意,作出實際圖形的上底面,如解圖.AC,CD是上底面的兩邊,過點CCBAD于點B.易得∠ACD=120°,ACCD,CBAD,∴∠CDB=30°,CBCD.

∵最長對角線長60 cm,2CBCD=60 cm,CB=15 cm,CD=30 cm,BD=15,AD=30 cm.∴膠帶的長至少為30×6+20×6≈432(cm)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是邊長為1的菱形ABCD對角線AC上的一個動點,點M,N分別是AB,BC邊上的中點,則MP+PN的最小值是( 。

A. B. 1 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運規(guī)律如下:當(dāng)x不超過100元時,觀光車能全部租出;當(dāng)x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.

1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入管理費)

2)當(dāng)每輛車的日租金為多少元時,每天的凈收入最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB⊙O的直徑,點C、D⊙O上,且BC=6cm,AC=8cm,∠ABD=45°

1)求BD的長;

2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)y=-+|x|的圖象與性質(zhì).
小軍根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=-+|x|的圖象與性質(zhì)進行了探究.
下面是小軍的探究過程,請補充完整:
1)函數(shù)y=-+|x|的自變量x的取值范圍是 ;
2)表是yx的幾組對應(yīng)值.

x

-2

-1.9

-1.5

-1

-0.5

0

1

2

3

4

y

2

1.60

0.80

0

-0.72

-1.41

-0.37

0

0.76

1.55

在平面直角坐標系xOy中,描出了以上表中各對對應(yīng)值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;


3)觀察圖象,函數(shù)的最小值是 ;
4)進一步探究,結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì)(函數(shù)最小值除外):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形DEF是三角形ABC經(jīng)過某種變換得到的圖形,A與點D,B與點E,C與點F分別是對應(yīng)點,觀察點與點的坐標之間的關(guān)系,解答下列問題:

(1)分別寫出點A與點D,B與點E,C與點F的坐標,并說說對應(yīng)點的坐標有哪些特征;

(2)若點P(a+3,4-b)與點Q(2a,2b-3)也是通過上述變換得到的對應(yīng)點a,b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A0,3)、B34)、C2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

1ABC向下平移4個單位長度得到的A1B1C1,點C1的坐標是 ;

2)以點B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為21,點C2的坐標是 ;(畫出圖形)

3A2B2C2的面積是 平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,ABAC,∠BAC=90°,直角∠EPF的頂點PBC中點,兩邊PE,PF分別交ABAC于點E,F,給出以下五個結(jié)論:①AECF;②∠APE=∠CPF;③△EPF是等腰三角形;④EFAP;⑤S四邊形AEPFSAPC.當(dāng)∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(E不與A,B重合),其中正確的序號有________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊型ABCD中,ABDC,過對角線AC的中點O,分別交邊AB,CD于點E,F,連接CE,AF.

1)求證:四邊形AECF是菱形;

2)若EF=8,AE=5,求四邊形AECF的面積.

查看答案和解析>>

同步練習(xí)冊答案