【題目】如圖,已知∠1,∠2互為補角,且∠3=∠B,
(1)求證:∠AFE=∠ACB
(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度數(shù).
【答案】(1)詳見解析;(2)70°.
【解析】
(1)求出DF∥AB,推出∠3=∠AEF,求出∠B=∠AEF,得出FE∥BC,根據(jù)平行線性質(zhì)求出即可;
(2)求出∠FED=80°-45°=35°,根據(jù)平行線性質(zhì)求出∠BCE=∠FED=35°,求出∠ACB=2∠BCE=70°,根據(jù)平行線性質(zhì)求出即可.
解:(1)因為∠1+∠FDE=180°,∠1,∠2互為補角,
所以∠2=∠FDE,所以DF∥AB,所以∠3=∠AEF.
因為∠3=∠B,所以∠B=∠AEF,所以FE∥BC,
所以∠AFE=∠ACB.
(2)因為∠1=80°,所以∠FDE=180°-∠1=100°.
因為∠3+∠FDE+∠FED=180°,
所以∠FED=180°-∠FDE-∠3=35°.
因為EF∥BC,所以∠BCE=∠FED=35°.
因為CE平分∠ACB,
所以∠ACB=2∠BCE=70°,
所以∠AFE=∠ACB=70°.
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y =(2m+1) x+ m-3
(1) 若函數(shù)圖象經(jīng)過原點,求m的值.
(2) 若函數(shù)圖象在y軸的交點的縱坐標為-2,求m的值.
(3)若函數(shù)的圖象平行直線y=-3x–3,求m的值.
(4)若這個函數(shù)是一次函數(shù),且y隨著x的增大而減小,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,D為邊BA延長線上一點,連接CD,以CD為一邊作等邊三角形CDE,連接AE.
(1)求證:△CBD≌△CAE.
(2)判斷AE與BC的位置關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知方程:①y=4x+2,②2x-3y=4.
(1)根據(jù)方程①填寫下表:
x | 2 | 1 | 0 | -1 | -2 |
y |
(2)根據(jù)方程②填寫下表:
x | 2 | 1 | 0 | -1 | -2 |
y |
(3)根據(jù)以上兩表中的數(shù)據(jù),求方程組的解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某出租車駕駛員從公司出發(fā),在南北向的人民路上連續(xù)接送5批客人,行駛路程記錄如下(規(guī)定向南為正,向北為負,單位:km):
①接送完第5批客人后,該駕駛員在公司什么方向,距離公司多少千米?
②若該出租車每千米耗油0.2升,那么在這過程中共耗油多少升?
③若該出租車的計價標準為:行駛路程不超過3km收費10元,超過3km的部分按每千米加1.8元收費,在這過程中該駕駛員共收到車費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個盒子里有完全相同的三個小球,球上分別標上數(shù)字﹣1、1、2.隨機摸出一個小球(不放回)其數(shù)字記為p,再隨機摸出另一個小球其數(shù)字記為q,則滿足關于x的方程x2+px+q=0有實數(shù)根的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在實踐中學習:
(1)如圖1所示:已知AB∥CD,∠ABD=115°,根據(jù) 可得出:∠BDC的度數(shù)是 .
(2)如圖2所示:已知AB∥CD,∠ABC=25°,∠EDC=40°,求∠BED的度數(shù).
(3)如圖3所示:已知MA∥NC,試確定∠A、∠B、∠C和∠E、∠F的關系,并說明理由.
(4)如圖4所示:已知AB∥CD,∠ABE=α,∠FCD=β,∠CFE=γ,且BE⊥EF,試確定α、β、γ的關系,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOC=∠BOC,點P在OC上,PD⊥OA于點D,PE⊥OB于點E.若OD=8,OP=10,則PE的長為( 。
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4),
(1)將△ABC各頂點的橫坐標保持不變,縱坐標分別減5后得到△A1B1C1;
①請在圖中畫出△A1B1C1;
②求這個變換過程中線段AC所掃過的區(qū)域面積;
(2)將△ABC繞點(1,0)按逆時針方向旋轉(zhuǎn)90°后得到的△A2B2C2,請在圖中畫出△A2B2C2,并分別寫出△A2B2C2的頂點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com