如圖所示,在平面直角坐標系中,過坐標原點O的圓M分別交x軸、y軸于點A(6,0)、B(0,-8).
(1)求直線AB的解析式;
(2)若有一條拋物線的對稱軸平行于y軸且經過M點,頂點C在圓M上,開口向下,且經過點B,求此拋物線的解析式;
(3)設(2)中的拋物線與x軸交于D(x1,y1)、E(x2,y2)兩點,且x1<x2,在拋物線上是否存在點P,使△PDE的面積是△ABC面積的?若存在,求出P點的坐標;若不存在,請說明理由.

【答案】分析:(1)已知了A、B兩點的坐標,可用待定系數(shù)法求出直線AB的解析式.
(2)已知了A、B的坐標,M是線段AB的中點,不難得出M點的坐標和圓的半徑,據此可求出C點的坐標.然后用頂點式二次函數(shù)解析式設拋物線,將B點坐標代入拋物線的解析式中即可求出待定系數(shù)的值.也就得出了拋物線的解析式.
(3)先求出三角形ABC的面積(可將三角形ABC分成三角形AMC和三角形BMC兩部分來求).然后根據三角形ABC與三角形PDE的面積比求出三角形PDE的面積.由于三角形PDE中,DE的長是定值,因此可求出P點的縱坐標的絕對值,將其代入拋物線的解析式中即可求出P點坐標.
解答:解:(1)設直線AB的解析式為y=kx+b
根據題意,得:
解之,得k=,b=-8
∴直線AB的解析式為y=x-8

(2)設拋物線對稱軸交x軸于F,
∵∠AOB=90°,
∴AB為圓M的直徑,即AM=BM,
∴拋物線的對稱軸經過點M,且與y軸平行,OA=6,
∴對稱軸方程為x=3,
作對稱軸交圓M于C,
∴MF是△AOB的中位線,
∴MF=BO=4,
∴CF=CM-MF=1,
∵點C(3,1),由題意可知C(3,1)就是所求拋物線的頂點.
方法一:設拋物線解析式為y=a(x-3)2+1,
∵拋物線過點B(0,-8),
∴-8=a(0-3)2+1,
解得:a=-1,
∴拋物線的解析式為y=-(x-3)2+1或y=-x2+6x-8;

方法二:∵拋物線過點B(0,-8),
∴可設拋物線的解析式為y=ax2+bx-8,
由題意可得:,
∴a=-1,b=6,
∴拋物線的解析式為y=-x2+6x-8;

(3)令-x2+6x-8=0,得x1=2,x2=4,
∴D(2,0),E(4,0),
設P(x,y),
則S△PDE=•DE•|y|=×2|y|=|y|,
S△ABC=S△BCM+S△ACM=•CM•(3+3)=×5×6=15,
若存在這樣的點P,則有|y|=×15=3,
從而y=±3,
當y=3時,-x2+6x-8=3,
整理得:x2-6x+11=0,
∵△=(-6)2-4×11<0,
∴此方程無實數(shù)根;
當y=-3時,-x2+6x-8=-3,
整理得:x2-6x+5=0,
解得:x1=1,x2=5,
∴這樣的P點存在,且有兩個這樣的點:P1(1,-3),P2(5,-3).
點評:本題考查了一次函數(shù)與二次函數(shù)解析式的確定、函數(shù)圖象交點、圖形面積的求法等知識點.綜合性較強,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在平面直角坐標系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y=
9x
的圖象在第一象限相精英家教網交于點A,過點A分別作x軸、y軸的垂線,垂足為點B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖所示,在平面直角坐標系中,點A、B的坐標分別為(-2,0)和(2,0).月牙①繞點B順時針旋轉90°得到月牙②,則點A的對應點A′的坐標為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,在平面直角坐標系中,一顆棋子從點P處開始依次關于點A,B,C作循環(huán)對稱跳動,即第一次從點P跳到關于點A的對稱點M處,第二次從點M跳到關于點B的對稱點N處,第三次從點N跳到關于點C的對稱點處,…如此下去.
(1)在圖中標出點M,N的位置,并分別寫出點M,N的坐標:
 

(2)請你依次連接M、N和第三次跳后的點,組成一個封閉的圖形,并計算這個圖形的面積;
(3)猜想一下,經過第2009次跳動之后,棋子將落到什么位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,在平面直角坐標系xoy中,有一組對角線長分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對角線OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點重合),依上述排列方式,對角線長為n的第n個正方形的頂點An的坐標為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+3(a≠0)經過A(-1,0)、B(3,0)兩點,拋物線與y軸交點為C,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接精英家教網BE.
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PBE的面積為s,求s與x的函數(shù)關系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應點為P',請直接寫出P'點坐標,并判斷點P'是否在該拋物線上.

查看答案和解析>>

同步練習冊答案