如果一個(gè)點(diǎn)能與另外兩個(gè)點(diǎn)能構(gòu)成直角三角形,則稱這個(gè)點(diǎn)為另外兩個(gè)點(diǎn)的勾股點(diǎn).例如:矩形ABCD中,點(diǎn)C與A,B兩點(diǎn)可構(gòu)成直角三角形ABC,則稱點(diǎn)C為A,B兩點(diǎn)的勾股點(diǎn).同樣,點(diǎn)D也是A,B兩點(diǎn)的勾股點(diǎn).
(1)如圖1,矩形ABCD中,AB=2,BC=1,請?jiān)谶匔D上作出A,B兩點(diǎn)的勾股點(diǎn)(點(diǎn)C和點(diǎn)D除外)(要求:尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(2)矩形ABCD中,AB=3,BC=1,直接寫出邊CD上A,B兩點(diǎn)的勾股點(diǎn)的個(gè)數(shù).
(3)如圖2,矩形ABCD中,AB=12cm,BC=4cm,DM=8cm,AN=5cm.動(dòng)點(diǎn)P從D點(diǎn)出發(fā)沿著DC方向以1 cm/s的速度向右移動(dòng),過點(diǎn)P的直線l平行于BC,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)M時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),點(diǎn)H為M,N兩點(diǎn)的勾股點(diǎn),且點(diǎn)H在直線l上.
①當(dāng)t=4時(shí),求PH的長.
②探究滿足條件的點(diǎn)H的個(gè)數(shù)(直接寫出點(diǎn)H的個(gè)數(shù)及相應(yīng)t的取值范圍,不必證明).
(1)作圖見解析;(2)4;(3)PH=或PH=2或PH=3.(4)當(dāng)0≤t<4或t=5或t=8時(shí),有2個(gè)勾股點(diǎn);當(dāng)t=4時(shí),有3個(gè)勾股點(diǎn);當(dāng)4<t<5或5<t<8時(shí),有4個(gè)勾股點(diǎn).
【解析】
試題分析:(1)以線段AB為直徑的圓與線段CD的交點(diǎn),或線段CD的中點(diǎn)就是A,B兩點(diǎn)在CD上的勾股點(diǎn);
(2)當(dāng)矩形ABCD中,AB=3,BC=1時(shí),此時(shí)以線段AB為直徑的圓與線段CD的交點(diǎn)有兩個(gè),加上C、D兩點(diǎn),總共四個(gè)點(diǎn);
(3)①如圖,當(dāng)t=4時(shí),PM=8-4=4,QN=5-4=1,分三種情況:當(dāng)∠MHN=90°時(shí),根據(jù)已知條件可以證明△PMH∽△QHN,然后利用相似三角形對應(yīng)線段成比例即可求出PH;當(dāng)∠H''NM=90°時(shí),設(shè)PH=x,那么H''Q=4-x,根據(jù)勾股定理得到PM2+PH''2=QN2+H''Q2+MN2,而MN==5,依次即可求出PH'';當(dāng)∠H'MN=90°時(shí),根據(jù)勾股定理得到H'P2+PM2+QH'2+QN2=MN2,而H'Q=PH'+PQ=PH'+4,依次即可求出PH'.
②利用①的結(jié)果可以探究滿足條件的點(diǎn)H的個(gè)數(shù)及相應(yīng)t的取值范圍.
試題解析:(1)如圖,以線段AB為直徑的圓與線段CD的交點(diǎn),或線段CD的中點(diǎn)E就是所勾股點(diǎn);
(2)∵矩形ABCD中,AB=3,BC=1時(shí),
∴以線段AB為直徑的圓與線段CD的交點(diǎn)有兩個(gè),加上C、D兩點(diǎn),總共四個(gè)點(diǎn)4個(gè);
(3)①如圖,當(dāng)t=4時(shí),PM=8-4=4,QN=5-4=1,
當(dāng)∠MHN=90°時(shí),
∵∠MPH=∠HQN=90°,
∴△PMH∽△QHN,
∴PH:QN=PM:HQ,
而PH+HQ=BC=4,
∴PH=2;
當(dāng)∠H''NM=90°時(shí),設(shè)PH=x,那么H''Q=4-x
依題意得PM2+PH''2=QN2+H''Q2+MN2,
而MN==5,
∴PH=;
當(dāng)∠H'MN=90°時(shí),QH'2+QN2-(H'P2+PM2)=MN2,
而H'Q=PH'+PQ=PH'+4,
∴PH=3.
∴PH=或PH=2或PH=3.
②當(dāng)0≤t<4時(shí),有2個(gè)勾股點(diǎn);
當(dāng)t=4時(shí),有3個(gè)勾股點(diǎn);
當(dāng)4<t<5時(shí),有4個(gè)勾股點(diǎn);
當(dāng)t=5時(shí),有2個(gè)勾股點(diǎn);
當(dāng)5<t<8時(shí),有4個(gè)勾股點(diǎn);
當(dāng)t=8時(shí),有2個(gè)勾股點(diǎn).
綜上所述,當(dāng)0≤t<4或t=5或t=8時(shí),有2個(gè)勾股點(diǎn);當(dāng)t=4時(shí),有3個(gè)勾股點(diǎn);當(dāng)4<t<5或5<t<8時(shí),有4個(gè)勾股點(diǎn).
考點(diǎn):1.勾股定理;2.相似三角形的判定與性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省九年級上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,Rt△ABC中,在AC邊上取點(diǎn)O畫圓使⊙O經(jīng)過A、B兩點(diǎn),下列結(jié)論中:①;②;③以O(shè)為圓心,以O(shè)C為半徑的圓與AB相切;④延長BC交⊙O與D,則A、B、D是以O(shè)A為半徑的⊙O的三等分點(diǎn).正確的序號是 (多填或錯(cuò)填不給分,少填或漏填酌情給分) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省濱州市九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
某反比例函數(shù)的圖象過點(diǎn)(1,-4),則此反比例函數(shù)解析式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宜興市九年級上學(xué)期第二次質(zhì)量抽測數(shù)學(xué)試卷(解析版) 題型:填空題
現(xiàn)有一個(gè)樣本方差的計(jì)算式S2=[(x1-20)2+(x2-20)2++(x10-20)2],則該樣本的平均數(shù)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宜興市九年級上學(xué)期第二次質(zhì)量抽測數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,在長為100 m,寬為80m的矩形場地上修建兩條寬度相等且互相垂直的道路,剩余部分進(jìn)行綠化,要使綠化面積為3200m2,則道路的寬應(yīng)為多少米?設(shè)道路的寬為x m,則可列方程為 ( )
A.100×80-100x-80x=3200 B.(100-x)(80-x)+x2=3200
C.(100-x)(80-x)=3200 D.100x+80x-x2=3200
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宜興市九年級11月階段性檢測數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,點(diǎn)A、B、C分別是⊙O上的點(diǎn),∠ B=60°, CD是⊙ O的直徑,P是CD延長線上的點(diǎn),且AP=AC.
(1)求證:AP是⊙O的切線;
(2)若AC= 3,求PD的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宜興市九年級11月階段性檢測數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,AD為⊙O的直徑,∠ABC=75º,且AC=BC,則∠BDE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚(yáng)州市寶應(yīng)縣九年級上學(xué)期期末測試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在某場足球比賽中,球員甲從球門底部中心點(diǎn)O的正前方10m處起腳射門,足球沿拋物線飛向球門中心線;當(dāng)足球飛離地面高度為3m時(shí)達(dá)到最高點(diǎn),此時(shí)足球飛行的水平距離為6m.已知球門的橫梁高OA為2.44m.
(1)在如圖所示的平面直角坐標(biāo)系中,問此飛行足球能否進(jìn)球門?(不計(jì)其它情況)
(2)守門員乙站在距離球門2m處,他跳起時(shí)手的最大摸高為2.52m,他能阻止球員甲的此次射門嗎?如果不能,他至少后退多遠(yuǎn)才能阻止球員甲的射門?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省鹽城市鹽都區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,小明用長為3m的竹竿CD做測量工具,測量學(xué)校旗桿AB的高度,移動(dòng)竹竿,使竹竿與旗桿的距離DB=12m,則旗桿AB的高為 _m.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com