已知二次函數(shù)y=x2+4x+3.
(1)用配方法將y=x2+4x+3化成y=a(x-h)2+k的形式;
(2)在平面直角坐標(biāo)系中,畫出這個二次函數(shù)的圖象;
(3)寫出當(dāng)x為何值時,y>0.
(1)y=x2+4x+3,
y=x2+4x+4-4+3,
y=x2+4x+4-1,
y=(x+2)2-1;

(2)列表:
x-4-3-2-10
y30-103
圖象見圖.

(3)由圖象可知,當(dāng)x<-3或x>-1時,y>0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c與自變量x的部分對應(yīng)值如下表:
x-1013
y-3131
現(xiàn)給出下列說法:
①該函數(shù)開口向上.②該函數(shù)圖象的對稱軸為過點(diǎn)(1,0)且平行于y軸的直線.
③當(dāng)x=4時,y<0.④方程ax2+bx+c=0的正根在3與4之間.其中正確的說法為______.(只需寫出序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

自由落體公式h=
1
2
gt2(g為常量),h與t之間的關(guān)系是( 。
A.正比例函數(shù)B.一次函數(shù)
C.二次函數(shù)D.以上答案都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=x(8-x)的頂點(diǎn)坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,拋物線y=ax2+bx+c交x軸于(-1,0)、(3,0)兩點(diǎn),則下列判斷中,錯誤的是( 。
A.圖象的對稱軸是直線x=1
B.當(dāng)x>1時,y隨x的增大而減小
C.一元二次方程ax2+bx+c=0的兩個根是-1和3
D.當(dāng)-1<x<3時,y<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2-2x-3
(1)求出拋物線y=x2-2x-3的對稱軸和頂點(diǎn)坐標(biāo);
(2)在直角坐標(biāo)系中,直接畫出拋物線y=x2-2x-3(注意:關(guān)鍵點(diǎn)要準(zhǔn)確,不必寫出畫圖象的過程);
(3)根據(jù)圖象回答:
①x取什么值時,拋物線在x軸的上方?
②x取什么值時,y的值隨x的值的增大而減?
(4)根據(jù)圖象直接寫出不等式x2-2x-3>5的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

確定下列拋物線的開口方向、對稱軸及頂點(diǎn)坐標(biāo).
y=
1
4
(x-2)2-1

②y=-3(x+3)2+2
③y=2(x-3)2+4
y=-
1
2
(x+1)2-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2+2x-3,解答下列問題:
(1)用配方法將該函數(shù)解析式化為y=a(x+m)2+k的形式;
(2)指出該函數(shù)圖象的開口方向、頂點(diǎn)坐標(biāo)、對稱軸,以及它的變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點(diǎn)A(3,0),二次函數(shù)圖象的對稱軸是x=1,下列結(jié)論正確的是(  )
A.b2>4acB.a(chǎn)c>0C.a(chǎn)﹣b+c>0D.4a+2b+c<0

查看答案和解析>>

同步練習(xí)冊答案