【題目】甲、乙兩超市(大型商場(chǎng))同時(shí)開業(yè),為了吸引顧客,都舉行有獎(jiǎng)酬賓活動(dòng):凡購(gòu)物滿100元,均可得到一次摸獎(jiǎng)的機(jī)會(huì).在一個(gè)紙盒里裝有2個(gè)紅球和2個(gè)白球,除顏色外其它都相同,摸獎(jiǎng)?wù)咭淮螐闹忻鰞蓚(gè)球,根據(jù)球的顏色決定送禮金券(在他們超市使用時(shí),與人民幣等值)的多少.(如下表)
甲超市:
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 5 | 10 | 5 |
乙超市:
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 10 | 5 | 10 |
(1)用樹狀圖表示得到一次摸獎(jiǎng)機(jī)會(huì)時(shí)中禮金券的所有情況;
(2)如果只考慮中獎(jiǎng)因素,你將會(huì)選擇去哪個(gè)超市購(gòu)物?請(qǐng)說明理由.
【答案】(1)一共有6種情況;(2)我選擇到甲商場(chǎng)購(gòu)物.
【解析】
試題分析:(1)讓所求的情況數(shù)除以總情況數(shù)即為所求的概率;
(2)算出相應(yīng)的平均收益,比較即可.
解:(1)樹狀圖為:
∴一共有6種情況;
(2)方法1:∵去甲超市購(gòu)物摸一次獎(jiǎng)獲10元禮金券的概率是P(甲)=,
去乙超市購(gòu)物摸一次獎(jiǎng)獲10元禮金券的概率是P(乙)=,
∴我選擇去甲超市購(gòu)物;
方法2:∵兩紅的概率P=,兩白的概率P=,一紅一白的概率P==,
∴在甲商場(chǎng)獲禮金券的平均收益是:×5+×10+×5=;
在乙商場(chǎng)獲禮金券的平均收益是:×10+×5+×10=.
∴我選擇到甲商場(chǎng)購(gòu)物.
說明:樹狀圖表示為如下形式且按此求解第(2)問的,也正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賽季甲、乙兩名籃球運(yùn)動(dòng)員12場(chǎng)比賽得分情況用圖表示如下:對(duì)這兩名運(yùn)動(dòng)員的成績(jī)進(jìn)行比較,下列四個(gè)結(jié)論中,不正確的是( )
A.甲運(yùn)動(dòng)員得分的極差大于乙運(yùn)動(dòng)員得分的極差
B.甲運(yùn)動(dòng)員得分的中位數(shù)小于乙運(yùn)動(dòng)員得分的中位數(shù)
C.甲運(yùn)動(dòng)員的得分平均數(shù)大于乙運(yùn)動(dòng)員的得分平均數(shù)
D.乙運(yùn)動(dòng)員的成績(jī)比甲運(yùn)動(dòng)員的成績(jī)穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面內(nèi),兩條不重合直線的位置關(guān)系可能是〔 〕
A.平行或相交 B.垂直或相交 C.垂直或平行 D.平行、垂直或相交
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是某同學(xué)的作業(yè)題:①3a+2b=5ab ②4m3n﹣5mn3=﹣m3n ③3x3(﹣2x2)=﹣6x5 ④(a3)2=a5,其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說法正確的是( )
A.同一平面內(nèi)不相交的兩線段必平行
B.同一平面內(nèi)不相交的兩射線必平行
C.同一平面內(nèi)不相交的一條線段與一條直線必平行
D.同一平面內(nèi)不相交的兩條直線必平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同一平面內(nèi)互不重合的三條直線的交點(diǎn)個(gè)數(shù)可能是_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:矩形OABC的頂點(diǎn)A,C分別在x,y軸的正半軸上,O為平面直角坐標(biāo)系的原點(diǎn);直線y=x+1分別交x,y軸及矩形OABC的BC邊于E,M,F(xiàn),且△EOM≌△FCM;過點(diǎn)F的雙曲線y=(x>0)與AB交于點(diǎn)N.
(1)求k的值;
(2)當(dāng)x 時(shí),>x+1;
(3)若F為BC中點(diǎn),求BN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在0、-1,1,-0.1,2,-3這六個(gè)數(shù)中中,最小的數(shù)是( )
A. 0 B. -0.1 C. -1 D. -3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com