【題目】如圖,在矩形ABCD中,EAB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連結(jié)AP并延長APCDF點,連結(jié)CP并延長CPADQ點.給出以下結(jié)論:

①四邊形AECF為平行四邊形;

②∠PBA=APQ;

③△FPC為等腰三角形;

④△APB≌△EPC.

其中正確結(jié)論的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】①根據(jù)三角形內(nèi)角和為180°易證∠PAB+PBA=90°,易證四邊形AECF是平行四邊形,即可解題;

②根據(jù)平角定義得:∠APQ+BPC=90°,由正方形可知每個內(nèi)角都是直角,再由同角的余角相等,即可解題;

③根據(jù)平行線和翻折的性質(zhì)得:∠FPC=PCE=BCE,FPC≠FCP,且∠PFC是鈍角,FPC不一定為等腰三角形;

④當BP=ADBPC是等邊三角形時,APB≌△FDA,即可解題.

①如圖,EC,BP交于點G;

∵點P是點B關(guān)于直線EC的對稱點,

EC垂直平分BP,

EP=EB,

∴∠EBP=EPB,

∵點EAB中點,

AE=EB,

AE=EP,

∴∠PAB=PBA,

∵∠PAB+PBA+APB=180°,即∠PAB+PBA+APE+BPE=2(PAB+PBA)=180°,

∴∠PAB+PBA=90°,

APBP,

AFEC;

AECF,

∴四邊形AECF是平行四邊形,

故①正確;

②∵∠APB=90°,

∴∠APQ+BPC=90°,

由折疊得:BC=PC,

∴∠BPC=PBC,

∵四邊形ABCD是正方形,

∴∠ABC=ABP+PBC=90°,

∴∠ABP=APQ,

故②正確;

③∵AFEC,

∴∠FPC=PCE=BCE,

∵∠PFC是鈍角,

BPC是等邊三角形,即∠BCE=30°時,才有∠FPC=FCP,

如右圖,PCF不一定是等腰三角形,

故③不正確;

④∵AF=EC,AD=BC=PC,ADF=EPC=90°,

RtEPC≌△FDA(HL),

∵∠ADF=APB=90°,FAD=ABP,

BP=ADBPC是等邊三角形時,APB≌△FDA,

∴△APB≌△EPC,

故④不正確;

其中正確結(jié)論有①②,2個,

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) y =kx2 +(k +1)x +1(k 為實數(shù)),

(1)當 k=3 時,求此函數(shù)圖象與 x 軸的交點坐標;

(2)判斷此函數(shù)與 x 軸的交點個數(shù),并說明理由;

(3)當此函數(shù)圖象為拋物線,且頂點在 x 軸下方,頂點到 y 軸的距離為 2,求 k 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列證明:如圖,已知AD⊥BC,EF⊥BC,∠1=∠2.

求證: DG∥BA.

證明:∵AD⊥BC,EF⊥BC ( 已知 )

∴∠EFB=90°,∠ADB=90°(_______________________ )

∴∠EFB=∠ADB ( 等量代換 )

∴EF∥AD ( _________________________________ )

∴∠1=∠BAD (________________________________________)

∵∠1=∠2 ( 已知)

(等量代換)

∴DG∥BA. (__________________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線C1:y=ax2+bx﹣a2關(guān)于y軸對稱且有最小值﹣1.

(1)求拋物線C1的解析式;

(2)在圖1中拋物線C1頂點為A,將拋物線C1 B旋轉(zhuǎn)180°后得到拋物線C2,直線y=kx﹣2k+4總經(jīng)過一定點M,若過定點M的直線與拋物線C2只有一個公共點,求直線l的解析式.

(3)如圖2,先將拋物線 C1向上平移使其頂點在原點O,再將其頂點沿直線y=x平移得到拋物線C3,設(shè)拋物線C3與直線y=x交于C、D兩點,求線段CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

1)這次統(tǒng)計共抽查了  名學(xué)生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為   ;

2)將條形統(tǒng)計圖補充完整;

3)該校共有1500名學(xué)生,請估計該校最喜歡用微信進行溝通的學(xué)生有多少名?

4)某天甲、乙兩名同學(xué)都想從微信、“QQ”、電話三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了參加荊州市中小學(xué)生首屆詩詞大會,某校八年級的兩班學(xué)生進行了預(yù)選,其中班上前5名學(xué)生的成績(百分制)分別為:八(1)班86,85,7792,85;八(2)班79,8592,85,89.通過數(shù)據(jù)分析,列表如下:

班級

平均分

中位數(shù)

眾數(shù)

方差

八(1

85

b

c

22.8

八(2

a

85

85

19.2

1)直接寫出表中a,b,c的值;

2)根據(jù)以上數(shù)據(jù)分析,你認為哪個班前5名同學(xué)的成績較好?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)已知A4m+10)、Bn4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△AOB的面積;

3)觀察圖象,直接寫出不等式kx+b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防甲型H1N1,某校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量ymg)與時間x(min)成正比例,藥物燃燒后,yx成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:

(1)藥物燃燒時,求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后yx的函數(shù)關(guān)系式呢?

(2)研究表明,當空氣中每立方米的含藥量低于1.6mg時,生方可進教室,那么從消毒開始,至少需要幾分鐘后,生才能進入教室?

(3)研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料263千克,乙種原料314千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共100件.生產(chǎn)一件產(chǎn)品所需要的原料及生產(chǎn)成本如下表所示:

甲種原料(單位:千克)

乙種原料(單位:千克)

生產(chǎn)成本(單位:元)

A產(chǎn)品

3

2

120

B產(chǎn)品

2.5

3.5

200

1)該工廠現(xiàn)有的原料能否保證生產(chǎn)需要?若能,有幾種生產(chǎn)方案?請你設(shè)計出來.

2)設(shè)生產(chǎn)A、B兩種產(chǎn)品的總成本為y元,其中生產(chǎn)A產(chǎn)品x件,試寫出yx之間的函數(shù)關(guān)系,并利用函數(shù)的性質(zhì)說明(1)中哪種生產(chǎn)方案總成本最低?最低生產(chǎn)總成本是多少?

查看答案和解析>>

同步練習(xí)冊答案