【題目】如圖1,已知拋物線y=﹣x2+x+x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D是點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn),連接CD,過點(diǎn)DDHx軸于點(diǎn)H,過點(diǎn)AAEACDH的延長線于點(diǎn)E.

(1)求線段DE的長度;

(2)如圖2,試在線段AE上找一點(diǎn)F,在線段DE上找一點(diǎn)P,且點(diǎn)M為直線PF上方拋物線上的一點(diǎn),求當(dāng)CPF的周長最小時,MPF面積的最大值是多少;

(3)在(2)問的條件下,將得到的CFP沿直線AE平移得到C′F′P′,將C′F′P′沿C′P′翻折得到C′P′F″,記在平移過稱中,直線F′P′x軸交于點(diǎn)K,則是否存在這樣的點(diǎn)K,使得F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.

【答案】(1)2 ;(2) ;(3)見解析.

【解析】分析:(1)根據(jù)解析式求得C的坐標(biāo),進(jìn)而求得D的坐標(biāo),即可求得DH的長度,令y=0,求得A,B的坐標(biāo),然后證得△ACO∽△EAH,根據(jù)對應(yīng)邊成比例求得EH的長,進(jìn)繼而求得DE的長;

(2)找點(diǎn)C關(guān)于DE的對稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對稱點(diǎn)G(-2,-),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,根據(jù)點(diǎn)的坐標(biāo)求得直線GN的解析式:y=x-;直線AE的解析式:y= -x-,過點(diǎn)My軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,-m+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP= -m+m+,根據(jù)解析式即可求得,△MPF面積的最大值;

(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進(jìn)而得出△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.

本題解析:1)對于拋物線y=﹣x2+x+

x=0,得y=,即C(0,),D(2,),

DH=

y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,

A(﹣1,0),B(3,0),

AEAC,EHAH,

∴△ACO∽△EAH,

=,即=

解得:EH=,

DE=2;

(2)找點(diǎn)C關(guān)于DE的對稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對稱點(diǎn)G(﹣2,﹣),

連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,

直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣

聯(lián)立得:F (0,﹣),P(2,),

過點(diǎn)My軸的平行線交FH于點(diǎn)Q,

設(shè)點(diǎn)M(m,﹣m2+m+),則Q(m, m﹣),(0m2);

SMFP=SMQF+SMQP=MQ×2=MQ=﹣m2+m+,

∵對稱軸為:直線m=2,開口向下,

m=時,△MPF面積有最大值: ;

(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),

CF=,CP==,

OC=,OA=1,

∴∠OCA=30°,

FC=FG,

∴∠OCA=FGA=30°,

∴∠CFP=60°,

∴△CFP為等邊三角形,邊長為,

翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,

1)當(dāng)K F′=KF″時,如圖3,

點(diǎn)KF′F″的垂直平分線上,所以KB重合,坐標(biāo)為(3,0),

OK=3;

2)當(dāng)F′F″=F′K時,如圖4,

F′F″=F′K=4,

FP的解析式為:y=x﹣,

∴在平移過程中,F′Kx軸的夾角為30°,

∵∠OAF=30°,

F′K=F′A

AK=4

OK=4﹣1或者4+1;

3)當(dāng)F″F′=F″K時,如圖5,

∵在平移過程中,F″F′始終與x軸夾角為60°,

∵∠OAF=30°,

∴∠AF′F″=90°,

F″F′=F″K=4,

AF″=8,

AK=12,

OK=11,

綜上所述:OK=3,4﹣1,4+1或者11.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一邊是另一邊的倍的三角形叫做智慧三角形,這兩邊中較長邊稱為智慧邊,這兩邊的 夾角叫做智慧角.

(1)在 Rt△ABC 中,∠ACB=90°,若∠A 為智慧角,則∠B 的度數(shù)為 ;

(2)如圖①,在△ABC 中,∠A=45°,∠B=30°,求證:△ABC 是智慧三角形;

(3)如圖②,△ABC 是智慧三角形,BC 為智慧邊,∠B 為智慧角,A(3,0),點(diǎn) B,C 在函數(shù) y x>0)的圖像上,點(diǎn) C 在點(diǎn) B 的上方,且點(diǎn) B 的縱坐標(biāo)為.當(dāng)△ABC是直角三角形時,求 k 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家規(guī)定個人發(fā)表文章、出版圖書所得稿費(fèi)的納稅計算方法是:

(1)稿費(fèi)不高于800元的不納稅;

(2)稿費(fèi)高于800元,而低于4000元的應(yīng)繳納超過800元的那部分稿費(fèi)的14%的稅;

(3)稿費(fèi)為4000元或高于4000元的應(yīng)繳納全部稿費(fèi)的11%的稅,

試根據(jù)上述納稅的計算方法作答:

①若王老師獲得的稿費(fèi)為2400元,則應(yīng)納稅________元,若王老師獲得的稿費(fèi)為4000元,則應(yīng)納稅________.

②若王老師獲稿費(fèi)后納稅420元,求這筆稿費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一所住宅的建筑平面圖.

1)用含有ab的式子表示這所住宅的建筑面積.

2)當(dāng)a5米,b4米時,住宅的建筑面積有多大?

3)在(2)的條件下,若此住宅的銷售單價為每平方米5000元,求此住宅的銷售價是多少元?(結(jié)果用科學(xué)記數(shù)法表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1),(3,57),(9,1113,15,17),(1921,2325,27,29,31),現(xiàn)有等式Am(i,j)表示正奇數(shù)m是第i組第j個數(shù)(從左往右數(shù)),如A7(2,3),則A2019( )

A.(3147)B.(31,48)C.(32,48)D.(3249)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】華聯(lián)超市第一次用7000元購進(jìn)甲、乙兩種商品,其中甲商品的件數(shù)是乙商品件數(shù)的2倍,甲、乙兩種商品的進(jìn)價和售價如表:(注:獲利=售價﹣進(jìn)價)

進(jìn)價(/)

20

30

售價(/)

25

40

(1)該超市購進(jìn)甲、乙兩種商品各多少件?

(2)該超市將第一次購進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

(3)該超市第二次以第一次的進(jìn)價又購進(jìn)甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍:甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都售完以后獲得的總利潤比第一次獲得的總利潤多800元,求第二次乙商品是按原價打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC30°,點(diǎn)D在△ABC外,且BD2.連AD、CD,則△ACD的周長最小值為( 。

A. 1B. C. 2D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某一城市美化工程招標(biāo)時,有甲、乙兩個工程隊投標(biāo).經(jīng)測算:甲隊單獨(dú)完成這項(xiàng)工程需要60天,乙隊單獨(dú)完成這項(xiàng)工程需要90天;若由甲隊先做20天,剩下的工程由甲、乙兩隊合做完成.

1)甲、乙兩隊合作多少天?

2)甲隊施工一天需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨(dú)完成該工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?

查看答案和解析>>

同步練習(xí)冊答案