精英家教網 > 初中數學 > 題目詳情

如圖,一根木棒AB長為2a,斜靠在與地面OM垂直的墻壁ON上,與地面的傾斜角∠ABO=60°,若木棒沿直線NO下滑,且B端沿直線OM向右滑行,則木棒中點P也隨之運動,已知A端下滑到A′時,AA′=數學公式a,求木棒中點P隨之運動到P′所經過的路線長.

解:連接OP、OP′,如圖,
∵ON⊥OM,P為AB中點,
∴OP=AB=A′B′=OP′,
∵AB=2a
∴OP=a,
當A端下滑B端右滑時,AB的中點P到O的距離始終為定長a,
∴P是隨之運動所經過的路線是一段圓弧,
∵∠ABO=60°,
∴∠AOP=30°,OA=a,
∵AA′=(-)a,OA′=OA-AA′=a,
∴sin∠A′B′O==,
∴∠A′B′O=45°,
∴∠A′OP=45°
∴∠POP′=∠A′OP′-∠AOP=15°,
∴弧PP′的長==πa,
即P點運動到P′所經過路線PP′的長為πa.
分析:根據直角三角形斜邊上的中線等于斜邊的一半得到OP=AB=A′B′=OP′,即P是隨之運動所經過的路線是一段圓;在Rt△AOB中,根據含30度的直角三角形三邊的關系得到∠AOP=30°,OA=a,則易求出OA′=OA-AA′=a,即可得到△A′OB′為等腰直角三角形,得到∠A′B′O=45°,則∠POP′=∠A′OP′-∠AOP=15°,然后根據弧長公式計算即可.
點評:本題考查了弧長公式:l=(n為弧所對的圓心角的度數,R為半徑).也考查了直角三角形斜邊上的中線等于斜邊的一半以及含30度的直角三角形三邊的關系和等腰直角三角形的性質.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,一油桶高AE為1m,桶內有油,一根木棒AB長為1.2m,從桶蓋的小口(A)處斜插入桶內,一端插到桶底,另一端與小口(A)齊平,抽出木棒,量得棒上未浸油部分AC長為0.48m.求桶內油面的高度DE.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•自貢)如圖,一根木棒(AB)長為2a,斜靠在與地面(OM)垂直的墻壁(ON)上,與地面的傾斜角(∠ABO)為60°,當木棒A端沿N0向下滑動到A′,AA′=(
3
-
2
)a
,B端沿直線OM向右滑動到B′,則木棒中點從P隨之運動到P′所經過的路徑長為
1
12
1
12

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,一根木棒(AB)長2a,斜靠在與地面(OM)垂直的墻(ON)上,與地面的傾斜角(∠ABO)為60°,若木棒A端沿直線ON下滑,且B端沿直線OM向右滑行(NO⊥OM),于是木棒的中點P也隨之運動,已知A端下滑到A'時,求中點P隨之運動到P'時經過的路線長.

查看答案和解析>>

科目:初中數學 來源:四川省自貢市2011年初中畢業(yè)生學業(yè)考試數學試卷 題型:022

如圖,一根木棒(AB)長為2a,斜靠在與地面(OM)垂直的墻壁(ON)上,與地面的傾斜角(∠ABO)為60°,當木棒A端沿N0向下滑動到,A,B端沿直線OM向右滑動到,則木棒中點從P隨之運動到所經過的路徑長為_________.

查看答案和解析>>

同步練習冊答案