【題目】已知,如圖ABCD,∠B80°,∠BCE20°,∠CEF80°,請(qǐng)判斷ABEF的位置關(guān)系,并說(shuō)明理由.

解:理由如下:

ABCD

∴∠B=∠BCD   

∵∠B80°,

∴∠BCD80°   

∵∠BCE20°,

∴∠ECD100°,

又∵∠CEF80°

   +   180°

EF   

又∵ABCD,

ABEF   

【答案】ABEF,理由見(jiàn)解析;填空答案:ABEF,兩直線平行,內(nèi)錯(cuò)角相等;等量代換,∠E,∠DCE,CD,同旁內(nèi)角互補(bǔ),兩直線平行;平行于同一直線的兩條直線互相平行.

【解析】

根據(jù)平行線的性質(zhì),可得∠BCD80°,進(jìn)而可得到∠E+ECD=180°,可證明EFCD,由平行的“傳遞性”可證明結(jié)論.

ABEF,理由如下:

ABCD,

∴∠B=∠BCD,(兩直線平行,內(nèi)錯(cuò)角相等)

∵∠B80°

∴∠BCD80°,(等量代換)

∵∠BCE20°

∴∠ECD100°,

∵∠CEF80°

∴∠E+DCE180°,

EFCD,(同旁內(nèi)角互補(bǔ),兩直線平行)

ABEF.(平行于同一條直線的兩條直線互相平行)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把△ABC先向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到△A1B1C1.

(1)在圖中畫(huà)出△A1B1C1,并寫(xiě)出點(diǎn)A1、B1C1的坐標(biāo);

(2)連接A1A、C1C,則四邊形A1ACC1的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OP平分∠AOB,PAOA,PBOB,垂足分別為A,B.下列結(jié)論中:①PAPB;②△AOP≌△BOP;③OAOB;④PO平分∠APB.其中成立的有________(填寫(xiě)正確的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD 中,∠ADB=90°,點(diǎn) E AB 邊的中點(diǎn),點(diǎn) F CD 邊的中點(diǎn).

(1)求證:四邊形 DEBF 是菱形;

(2)當(dāng)∠A 等于多少度時(shí),四邊形 DEBF 是正方形?并說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)整數(shù)點(diǎn),其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根據(jù)這個(gè)規(guī)律探究可得,第100個(gè)點(diǎn)的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,邊形為菱形,點(diǎn)為對(duì)角線上的一個(gè)動(dòng)點(diǎn),連接并延長(zhǎng)交于點(diǎn),連接.

(1)如圖1,求證:;

(2)如圖2,若,且,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一邊是另一邊的倍的三角形叫做智慧三角形,這兩邊中較長(zhǎng)邊稱為智慧邊,這兩邊的 夾角叫做智慧角.

(1)在 Rt△ABC 中,∠ACB=90°,若∠A 為智慧角,則∠B 的度數(shù)為 ;

(2)如圖①,在△ABC 中,∠A=45°,∠B=30°,求證:△ABC 是智慧三角形;

(3)如圖②,△ABC 是智慧三角形,BC 為智慧邊,∠B 為智慧角,A(3,0),點(diǎn) BC 在函數(shù) y x>0)的圖像上,點(diǎn) C 在點(diǎn) B 的上方,且點(diǎn) B 的縱坐標(biāo)為.當(dāng)△ABC是直角三角形時(shí),求 k 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.

(1)求證:OE是CD的垂直平分線.

(2)若∠AOB=60,請(qǐng)你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,拋物線y=ax2+bx+3x軸的兩個(gè)交點(diǎn)分別為A(﹣3,0),B(1,0),與y軸的交點(diǎn)為D,對(duì)稱軸與拋物線交于點(diǎn)C,與x軸負(fù)半軸交于點(diǎn)H.

(1)求拋物線的表達(dá)式;

(2)點(diǎn)E,F(xiàn)分別是拋物線對(duì)稱軸CH上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E在點(diǎn)F上方),且EF=1,求使四邊形BDEF的周長(zhǎng)最小時(shí)的點(diǎn)E,F(xiàn)坐標(biāo)及最小值;

(3)如圖2,點(diǎn)P為對(duì)稱軸左側(cè),x軸上方的拋物線上的點(diǎn),PQ⊥AC于點(diǎn)Q,是否存在這樣的點(diǎn)P使△PCQ△ACH相似?若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案