【題目】(8分)如圖,在ABC中,C=60°,A=40°.

(1)用尺規(guī)作圖作AB的垂直平分線,交AC于點(diǎn)D,交AB于點(diǎn)E(保留作圖痕跡,不要求寫作法和證明);

(2)求證:BD平分CBA.

【答案】(1)作圖見試題解析;(2)證明見試題解析

【解析】

試題分析:(1)分別以A、B兩點(diǎn)為圓心,以大于AB長(zhǎng)度為半徑畫弧,在AB兩邊分別相交于兩點(diǎn),然后過這兩點(diǎn)作直線即為AB的垂直平分線;

(2)根據(jù)線段垂直平分線的性質(zhì)和三角形的內(nèi)角和證明即可.

試題解析:(1)如圖1所示:

(2)連接BD,如圖2所示:

∵∠C=60°,A=40°,∴∠CBA=80°,DE是AB的垂直平分線,∴∠A=DBA=40°,∴∠DBA=CBA,BD平分CBA.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD為∠BAC的平分線,BMAD,垂足為M,AB=5,BM=2,AC=9,∠ABC與∠C的關(guān)系為(

A.ABC=2CB.∠ABC=CC.ABC=CD.ABC=3C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為A10,0)、C0,4),點(diǎn)DOA的中點(diǎn),點(diǎn)PBC邊上運(yùn)動(dòng),當(dāng)ODP是腰長(zhǎng)為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】知識(shí)是用來(lái)為人類服務(wù)的,我們應(yīng)該把它們用于有意義的方面.下面就兩個(gè)情景請(qǐng)你作出評(píng)判.

情景一:從教室到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪,這是為什么呢?試用所學(xué)數(shù)學(xué)知識(shí)來(lái)說(shuō)明這個(gè)問題.

情景二:A、B是河流l兩旁的兩個(gè)村莊,現(xiàn)要在河邊修一個(gè)抽水站向兩村供水,問抽水站修在什么地方才能使所需的管道最短?請(qǐng)?jiān)趫D中表示出抽水站點(diǎn)P的位置,并說(shuō)明你的理由:

你贊同以上哪種做法?你認(rèn)為應(yīng)用數(shù)學(xué)知識(shí)為人類服務(wù)時(shí)應(yīng)注意什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某區(qū)環(huán)保部門為了提高宣傳垃圾分類的實(shí)效,抽樣調(diào)查了部分居民小區(qū)一段時(shí)間內(nèi)生活垃圾的分類情況,進(jìn)行整理后,繪制了如下兩幅不完整的統(tǒng)計(jì)圖:

根據(jù)統(tǒng)計(jì)圖解答下列問題:

1)求抽樣調(diào)查的生活垃圾的總噸數(shù);

2)求扇形統(tǒng)計(jì)圖中,“D”部分所對(duì)應(yīng)的圓心角的度數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)調(diào)查發(fā)現(xiàn),在可回收物中廢紙垃圾約占,每回收 1 噸廢紙可再造 0.85 噸的再生紙,假設(shè)該城市每月生產(chǎn)的生活垃圾為10000 噸,且全部分類處理,那么每月回收的廢紙可制成再生紙多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC

(1)求作:△ABC的內(nèi)切圓⊙O(要求尺規(guī)作圖,保留作圖痕跡,不必寫作法)

(2)綜合應(yīng)用:在你所作的圓中,若∠AOB=140°,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為了擴(kuò)大生產(chǎn),決定購(gòu)買6臺(tái)機(jī)器用于生產(chǎn)零件,現(xiàn)有甲、乙兩種機(jī)器可供選擇,其中甲型機(jī)器每日生產(chǎn)零件106個(gè),乙型機(jī)器每日生產(chǎn)零件60個(gè),經(jīng)調(diào)查,購(gòu)買3臺(tái)甲型機(jī)器和2臺(tái)乙機(jī)器共需31萬(wàn)元,購(gòu)買一臺(tái)甲型機(jī)器比購(gòu)買一臺(tái)乙型機(jī)器多2萬(wàn)元.

1)求甲、乙兩種機(jī)器每臺(tái)各多少萬(wàn)元?

2)如果工廠購(gòu)買機(jī)器的預(yù)算資金不超過34萬(wàn)元,那么該工廠有幾種購(gòu)買方案?

3)在(2)的條件下,如果該工廠購(gòu)進(jìn)的6臺(tái)機(jī)器的日產(chǎn)量能力不能低于380個(gè),那么為了節(jié)約資金,應(yīng)選擇那種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y2x與反比例函數(shù)y (k≠0x0)的圖象交于點(diǎn)A(1,a),點(diǎn)B是此反比例函數(shù)圖象上任意一點(diǎn)(不與點(diǎn)A重合),BCx軸于點(diǎn)C.

(1)k的值;

(2)OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲,ABBDCDBD,APPC,垂足分別為BP、D,且三個(gè)垂足在同一直線上,我們把這樣的圖形叫“三垂圖”.

1)證明:ABCD=PBPD

2)如圖乙,也是一個(gè)“三垂圖”,上述結(jié)論成立嗎?請(qǐng)說(shuō)明理由.

3)已知拋物線與x軸交于點(diǎn)A-1,0),B30),與y軸交于點(diǎn)(0,-3),頂點(diǎn)為P,如圖丙所示,若Q是拋物線上異于A、B、P的點(diǎn),使得∠QAP=90°,求Q點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案