如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(﹣1,0),B(4,0),C(0,2)三點.
(1)求這條拋物線的解析式;
(2)E為拋物線上一動點,是否存在點E,使以A、B、E為頂點的三角形與△COB相似?若存在,試求出點E的坐標;若不存在,請說明理由;
(3)若將直線BC平移,使其經(jīng)過點A,且與拋物線相交于點D,連接BD,試求出∠BDA的度數(shù).
【考點】二次函數(shù)綜合題;一次函數(shù)的應(yīng)用;勾股定理的應(yīng)用;等腰直角三角形;矩形的性質(zhì);相似三角形的應(yīng)用.
【專題】代數(shù)幾何綜合題;壓軸題.
【分析】(1)本題需先根據(jù)已知條件,過C點,設(shè)出該拋物線的解析式為y=ax2+bx+2,再根據(jù)過A,B兩點,即可得出結(jié)果;
(2)由圖象可知,以A、B為直角頂點的△ABE不存在,所以△ABE只可能是以點E為直角頂點的三角形.由相似關(guān)系求出點E的坐標;
(3)如圖2,連結(jié)AC,作DE⊥x軸于點E,作BF⊥AD于點F,由BC∥AD設(shè)BC的解析式為y=kx+b,設(shè)AD的解析式為y=kx+n,由待定系數(shù)法求出一次函數(shù)的解析式,就可以求出點D坐標,由勾股定理就可以求出BD的值,由勾股定理的逆定理就可以得出∠ACB=90°,由平行線的性質(zhì)就可以得出∠CAD=90°,就可以得出四邊形ACBF是矩形,就可以得出BF的值,由勾股定理求出DF的值,而得出DF=BF而得出結(jié)論.
【解答】解:(1)∵該拋物線過點C(0,2),
∴可設(shè)該拋物線的解析式為y=ax2+bx+2.
將A(﹣1,0),B(4,0)代入,
得,
解得,
∴拋物線的解析式為:y=﹣x2+x+2.
(2)存在.
由圖象可知,以A、B為直角頂點的△ABE不存在,所以△ABE只可能是以點E為直角頂點的三角形.
在Rt△BOC中,OC=2,OB=4,
∴BC==.
在Rt△BOC中,設(shè)BC邊上的高為h,則×h=×2×4,
∴h=.
∵△BEA∽△COB,設(shè)E點坐標為(x,y),
∴=,
∴y=±2
將y=2代入拋物線y=﹣x2+x+2,
得x1=0,x2=3.
當(dāng)y=﹣2時,不合題意舍去.
∴E點坐標為(0,2),(3,2).
(3)如圖2,連結(jié)AC,作DE⊥x軸于點E,作BF⊥AD于點F,
∴∠BED=∠BFD=∠AFB=90°.
設(shè)BC的解析式為y=kx+b,由圖象,得
,
∴,
yBC=﹣x+2.
由BC∥AD,設(shè)AD的解析式為y=﹣x+n,由圖象,得
0=﹣×(﹣1)+n
∴n=﹣,
yAD=﹣x﹣.
∴﹣x2+x+2=﹣x﹣,
解得:x1=﹣1,x2=5
∴D(﹣1,0)與A重合,舍去;
∴D(5,﹣3).
∵DE⊥x軸,
∴DE=3,OE=5.
由勾股定理,得BD=.
∵A(﹣1,0),B(4,0),C(0,2),
∴OA=1,OB=4,OC=2.
∴AB=5
在Rt△AOC中,Rt△BOC中,由勾股定理,得
AC=,BC=2,
∴AC2=5,BC2=20,AB2=25,
∴AC2+BC2=AB2
∴△ACB是直角三角形,
∴∠ACB=90°.
∵BC∥AD,
∴∠CAF+∠ACB=180°,
∴∠CAF=90°.
∴∠CAF=∠ACB=∠AFB=90°,
∴四邊形ACBF是矩形,
∴AC=BF=,
在Rt△BFD中,由勾股定理,
得DF=,
∴DF=BF,
∴∠ADB=45°.
【點評】本題考查了運用待定系數(shù)法求二次函數(shù)解析式和一次函數(shù)的解析式的運用,相似三角形的性質(zhì)的運用,勾股定理的運用,矩形的判定及性質(zhì)的運用,等腰直角三角形的性質(zhì)的運用,解答時求出函數(shù)的解析式是關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
10名學(xué)生的體重分別是41,48,50,53,49,53,53,51,67(單位:kg),這組數(shù)據(jù)的眾數(shù)是
A.67 B.53 C.50 D.49
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠C=90°,分別以A、B為圓心,以相等長度(大于AB的長度)為半徑畫弧,得到兩個交點M、N,作直線MN分別交AC、AB于E、D兩點,連接EB,若∠EBC=28°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0,其中正確的是 (填編號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若反比例函數(shù)y=的圖象經(jīng)過(﹣2,5),則該反比例函數(shù)的圖象在( 。
A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
每年9月舉行“全國中學(xué)生數(shù)學(xué)聯(lián)賽”,成績優(yōu)異的選手可參加“全國中學(xué)生數(shù)學(xué)冬令營”,冬令營再選拔出50名優(yōu)秀選手進入“國家集訓(xùn)隊”.第31界冬令營已于2015年12月在江西省鷹譚一中成功舉行.現(xiàn)將脫穎而出的50名選手分成兩組進行競賽,每組25人,成績整理并繪制成如下的統(tǒng)計圖:
請你根據(jù)以上提供的信息解答下列問題:
(1)請你將表格補充完整:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
一組 | 74 | __________ | __________ | 104 |
二組 | __________ | __________ | __________ | 72 |
(2)從本次統(tǒng)計數(shù)據(jù)來看,__________組比較穩(wěn)定.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com