【題目】如圖,在平面直角坐標系中:A(1,1),B(-1,1),C(-1,-2),D(1,-2),現把一條長為2 018個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按A→B→C→D→A→…的規(guī)律緊繞在四邊形ABCD的邊上,則細線另一端所在位置的點的坐標是________.
科目:初中數學 來源: 題型:
【題目】(感知)如圖①,AB∥CD,點E在直線AB與CD之間,連結AE、BE,試說明∠BEE+∠DCE=∠AEC.下面給出了這道題的解題過程,請完成下面的解題過程,并填空(理由或數學式):
解:如圖①,過點E作EF∥AB
∴∠BAE=∠1( )
∵AB∥CD( )
∴CD∥EF( )
∴∠2=∠DCE
∴∠BAE+∠DCE=∠1+∠2( )
∴∠BAE+∠DCE=∠AEC
(探究)當點E在如圖②的位置時,其他條件不變,試說明∠AEC+∠FGC+∠DCE=360°;
(應用)點E、F、G在直線AB與CD之間,連結AE、EF、FG和CG,其他條件不變,如圖③.若∠EFG=36°,則∠BAE+∠AEF+∠FGC+∠DCG= °.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數的圖象經過點(-3,-2).
(1)求這個函數表達式;
(2)判斷(-5,3)是否在這個函數的圖象上.
(3)點M在直線y=kx+4上且到y軸的距離是3,求點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中國古代有二十四節(jié)氣歌,“春雨驚春清谷天,夏滿芒夏暑相連.秋處露秋寒霜降,冬雪雪冬小大寒.”它是為便于記憶我國古時歷法中二十四節(jié)氣而編成的小詩歌,流傳至今.節(jié)氣指二十四時節(jié)和氣候,是中國古代訂立的一種用來指導農事的補充歷法,是中國古代勞動人民長期經驗的積累和智慧的結晶.其中第一個字“春”是指立春,為春季的開始,但在氣象學上的入春日是有嚴格定義的,即連續(xù)5天的日平均氣溫穩(wěn)定超過10℃又低于22℃,才算是進入春天,其中,5天中的第一天即為入春日.例如:2014年3月13日至18日,北京的日平均氣溫分別為9.3℃,11.7℃,12.7℃,11.7℃,12.7℃和12.3℃,即從3月14日開始,北京日平均氣溫已連續(xù)5天穩(wěn)定超過10℃,達到了氣象學意義上的入春標準.因此可以說2014年3月14日為北京的入春日. 日平均溫度是指一天24小時的平均溫度.氣象學上通常用一天中的2時、8時、14時、20時4個時刻的氣溫的平均值作為這一天的日平均氣溫(即4個氣溫相加除以4),結果保留一位小數.
如表是北京順義2017年3月28日至4月3日的氣溫記錄及日平均氣溫(單位:℃)
時間 | 2時 | 8時 | 14時 | 20時 | 平均氣溫 |
3月28日 | 6 | 8 | 13 | 11 | 9.5 |
3月29日 | 7 | 6 | 17 | 14 | a |
3月30日 | 7 | 9 | 15 | 12 | 10.8 |
3月31日 | 8 | 10 | 19 | 13 | 12.5 |
4月1日 | 8 | 7 | 18 | 15 | 12 |
4月2日 | 11 | 7 | 22 | 16 | 14 |
4月3日 | 13 | 11 | 21 | 17 | 15.5 |
根據以上材料解答下列問題:
(1)求出3月29日的日平均氣溫a;
(2)采用適當的統(tǒng)計圖將這7天的日平均氣溫的變化情況表示出來;
(3)請指出2017年的哪一天是北京順義在氣象學意義上的入春日.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是某電視塔周圍的建筑群平面示意圖,這個電視塔的位置用A表示.某人由點B出發(fā)到電視塔,他的路徑表示錯誤的是(注:街在前,巷在后)( )
A. (2,2)→(2,5)→(5,6) B. (2,2)→(2,5)→(6,5)
C. (2,2)→(6,2)→(6,5) D. (2,2)→(2,3)→(6,3)→(6,5)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內,邊BC與x軸平行,A,B兩點的縱坐標分別為3,1,反比例函數y= 的圖象經過A,B兩點,則菱形ABCD的面積為( )
A.2
B.4
C.2
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游。
[來
根據以上信息,解答下列問題:
(1)設租車時間為小時,租用甲公司的車所需費用為元,租用乙公司的車所需費用為元,分別求出,關于的函數表達式;
(2)請你幫助小明計算并選擇哪個出游方案合算。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB交雙曲線 于A,B兩點,交x軸于點C,且BC= AB,過點B作BM⊥x軸于點M,連結OA,若OM=3MC,S△OAC=8,則k的值為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD交于點O,AB=AC,點E是BD上一點,且AE=AD,∠EAD=∠BAC.
⑴ 求證:∠ABD=∠ACD;
⑵ 若∠ACB=65°,求∠BDC的度數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com