精英家教網 > 初中數學 > 題目詳情
如圖所示,將△ABC繞AC的中點O順時針旋轉180°得到△CDA,添加一個條件
     ,使四邊形ABCD為矩形.
∠B=90°。
∵△ABC繞AC的中點O順時針旋轉180°得到△CDA,∴AB=CD,∠BAC=∠DCA!郃B∥CD。
∴四邊形ABCD為平行四邊形。
當∠B=90°時,平行四邊形ABCD為矩形,∴添加的條件為∠B=90°。
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,小紅用一張長方形紙片ABCD進行折紙,已知該紙片寬AB為8cm,長BC為10cm.當小紅折疊時,頂點D落在BC邊上的點F處(折痕為AE).求EC的長度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

通過類比聯想、引申拓展研究典型題目,可達到解一題知一類的目的。下面是一個案例,請補充完整。

原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由。
(1)思路梳理
∵AB=CD,
∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合。
∵∠ADC=∠B=90°,
∴∠FDG=180°,點F、D、G共線。
根據    ,易證△AFG≌    ,得EF=BE+DF。
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°,點E、F分別在邊BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,則當∠B與∠D滿足等量關系    時,仍有EF=BE+DF。
(3)聯想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°。猜想BD、DE、EC應滿足的等量關系,并寫出推理過程。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,?ABCD中,點E、F分別在AD、BC上,且AE=CF.求證:BE=DF.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

對角線互相   的平行四邊形是菱形.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB<BC,AC,BD相交于點O,則圖中等腰三角形的個數是
A.8B.6C.4D.2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

小明、小華在一棟電梯樓前感慨樓房真高.小明說:“這樓起碼20層!”小華卻不以為然:“20層?我看沒有,數數就知道了!”小明說:“有本事,你不用數也能明白!”小華想了想說:“沒問題!讓我們來量一量吧!”小明、小華在樓體兩側各選A、B兩點,測量數據如圖,其中矩形CDEF表示樓體,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四點在同一直線上)問:

(1)樓高多少米?
(2)若每層樓按3米計算,你支持小明還是小華的觀點呢?請說明理由.(參考數據:≈1.73,≈1.41,≈2.24)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(2013年四川廣安6分)如圖,在平行四邊形ABCD中,AE∥CF,求證:△ABE≌△CDF.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,順次連結四邊形ABCD四邊的中點E、F、G、H,則四邊形EFGH的形狀一定是    

查看答案和解析>>

同步練習冊答案