【題目】在Rt△ABC中,∠A=30°,∠ACB=90°,AB=10,D為AC上點.將BD繞點B順時針旋轉(zhuǎn)60°得到BE,連接CE.
(1)證明:∠ABD=∠CBE;
(2)連接ED,若ED=2,求的值.
【答案】(1)見解析;(2).
【解析】
(1)根據(jù)三角形的內(nèi)角和得到∠ABC=60°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠EBD=60°,根據(jù)角的和差即可得到∠ABD=∠CBE;
(2)過D作DH⊥AB于H,解直角三角形得到AD=2DH,AH=DH,求得BH=10﹣DH,推出△BDE是等邊三角形,得到BD=DE=2,根據(jù)勾股定理列方程即可得到結(jié)論.
(1)∵在Rt△ABC中,∠A=30°,∠ACB=90°,
∴∠ABC=60°,
∵將BD繞點B順時針旋轉(zhuǎn)60°得到BE,
∴∠EBD=60°,
∴∠ABD=60°﹣∠CBD,∠CBE=60°﹣∠CBD,
∴∠ABD=∠CBE;
(2)過D作DH⊥AB于H,
∵∠A=30°,
∴AD=2DH,AH=DH,
∴BH=10﹣DH,
∵將BD繞點B順時針旋轉(zhuǎn)60°得到BE,
∴BE=BD,
∴△BDE是等邊三角形,
∴BD=DE=2,
在Rt△BDH中,BD2=BH2+DH2,
即(2)2=(10﹣DH)2+DH2,
解得:DH=,或DH=4(不合題意舍去),
∴AD=2,
∵AC=5,
∴CD=3,
∴=.
科目:初中數(shù)學 來源: 題型:
【題目】我縣在治理違建的過程中,某小區(qū)拆除了自建房,改建綠地.如圖,自建房占地是邊長為20m的正方形ABCD,改建的綠地是矩形AEFG,其中點E在AB上,點G在AD的延長線上,且DG=2BE.如果設BE的長為x(單位:m),綠地AEFG的面積為y(單位:m2),那么y與x的函數(shù)的解析式為_____,綠地AEFG的最大面積為______m2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將函數(shù)y= (x-2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(1,m),B(4,n)平移后的對應點分別為點A′,B′,若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象過A(2,0),B(0,-1)和C(4,5)三點。
(1)求二次函數(shù)的解析式;
(2)設二次函數(shù)的圖象與軸的另一個交點為D,求點D的坐標;
(3)在同一坐標系中畫出直線,并寫出當在什么范圍內(nèi)時,一次函數(shù)的值大于二次函數(shù)的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩校分別有一男一女共4名教師報名到農(nóng)村中學支教.
(1)若從甲、乙兩校報名的教師中分別隨機選1名,則所選的2名教師性別相同的概率是 .
(2)若從報名的4名教師中隨機選2名,用列表或畫樹狀圖的方法求出這2名教師來自同一所學校的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于鈍角α,定義它的三角函數(shù)值如下:sinα=sin (180°-α),cosα=-cos (180°-α);若一個三角形的三個內(nèi)角的比是1∶1∶4,A,B是這個三角形的兩個頂點,sinA,cosB是方程4x2-mx-1=0的兩個不相等的實數(shù)根,求m的值及∠A和∠B的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為2,弦BC的長為,點A為弦BC所對優(yōu)弧上任意一點(B,C兩點除外).
(1)求∠BAC的度數(shù);
(2)求△ABC面積的最大值.
(參考數(shù)據(jù): ,,.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】陽光中學組織學生開展社會實踐活動,調(diào)查某社區(qū)居民對消防知識的了解程度(A:特別熟悉,B:有所了解,C:不知道),在該社區(qū)隨機抽取了100名居民進行問卷調(diào)查,將調(diào)查結(jié)果制成如圖所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖解答下列問題:
(1)若該社區(qū)有居民900人,試估計對消防知識“特別熟悉”的居民人數(shù);
(2)該社區(qū)的管理人員有男、女個2名,若從中選2名參加消防知識培訓,試用列表或畫樹狀圖的方法,求恰好選中一男一女的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com