閱讀與應用:
閱讀1:a、b為實數(shù),且a>0,b>0,因為(﹣)2≥0,所以a﹣2+b≥0從而a+b≥2(當a=b時取等號).
閱讀2:若函數(shù)y=x+;(m>0,x>0,m為常數(shù)),由閱讀1結論可知:x+≥2,所以當x=,即x=時,函數(shù)y=x+的最小值為2.
閱讀理解上述內(nèi)容,解答下列問題:
問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為2(x+),求當x= 時,周長的最小值為 ;
問題2:已知函數(shù)y1=x+1(x>﹣1)與函數(shù)y2=x2+2x+10(x>﹣1),
當x= 時,的最小值為 ;
問題3:某民辦學校每天的支出總費用包含以下三個部分:一是教職工工資4900元;二是學生生活費成本每人10元;三是其他費用.其中,其他費用與學生人數(shù)的平方成正比,比例系數(shù)為0.01.當學校學生人數(shù)為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學生人數(shù))
解:問題1:x=(x>0),解得x=2,
x=2時,x+有最小值為2×=4.
故當x=2時,周長的最小值為2×4=8.
問題2:∵函數(shù)y1=x+1(x>﹣1),函數(shù)y2=x2+2x+10(x>﹣1),
∴=(x+1)+,
x+1=,解得x=2,
x=2時,(x+1)+有最小值為2×=6.
問題3:設學校學生人數(shù)為x人,
則生均投入==10+0.01x+=10+0.01(x+),
x=(x>0),解得x=700,
x=700時,x+有最小值為2×=1400,
故當x=700時,生均投入的最小值為10+0.01×1400=24元.
答:當學校學生人數(shù)為700時,該校每天生均投入最低,最低費用是24元.
故答案為:2,8;2,6.
科目:初中數(shù)學 來源: 題型:
水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤。通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤。為了保證每天至少售出260斤,張阿姨決定降價銷售。
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com