【題目】如圖,在△ABC 中,∠BAC90°,ABAC12cm,點(diǎn) D 為△ABC 內(nèi)一點(diǎn),∠BAD15°,AD 4 cm,連接 BD,將△ABD 繞點(diǎn) A 按逆時(shí)針方向旋轉(zhuǎn),使 AB AC 重合,點(diǎn) D 的對(duì)應(yīng)點(diǎn)點(diǎn) E,連接 DEDE AC 于點(diǎn) F,則 CF 的長為__________cm

【答案】4

【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)以及直角三角形的性質(zhì)得出△DAE是等腰直角三角形,進(jìn)而求出DE的長度和叫FAG的度數(shù),再利用直角三角形中30°的性質(zhì)以及三角函數(shù)計(jì)算即可得出答案.

如圖所示,過點(diǎn)ABE的垂線交BE于點(diǎn)G

根據(jù)旋轉(zhuǎn)的性質(zhì)可知:AB=AC=12cm

AD=AE=cm,∠BAD=CAE=15°

∵∠BAC=90°,即∠BAD+DAF=90°

∴∠CAE+DAF=90°,即∠DAE=90°

AD=AE

∴△DAE是等腰直角三角形

∴∠AED=45°,DE=cm

AGDE

∴∠EAG=45°

∵∠CAE=15°

∴∠FAG=EAG-EAF=30°

AG=DE=cm

AF=cm

CF=AC-AF=12-8=4cm

故答案為4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,點(diǎn)D為邊BC的中點(diǎn),以AD為邊作等邊△ADE,連接BE.
求證:BE=BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有足夠多的長方形和正方形卡片,如下圖:

(1)如果選取1號(hào)、2號(hào)、3號(hào)卡片分別為l張、1張、2張,可拼成一個(gè)長方形(不重疊無縫隙),請(qǐng)畫出這個(gè)長方形(所畫圖形大小和原圖保持一致),并用等式表示拼圖前后面積之間的關(guān)系:         

(2)小明用類似方法解釋分解因式a25ab4b2,請(qǐng)畫圖說明小明的方法(所畫圖形大小和原圖保持一致),并寫出分解因式的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,DCE的角平分線CG的反向延長線和ABE的角平分線BF交于點(diǎn)F,EF36°,則E=(

A.82°B.84°C.97°D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形ABC(記作△ABC)在8×8方格中,位置如圖所示,A(﹣21),B(﹣1,4).

1)請(qǐng)你在方格中建立直角坐標(biāo)系,并寫出C點(diǎn)的坐標(biāo);

2)把△ABC向上平移2個(gè)單位長度,再向右平移3個(gè)單位長度,請(qǐng)你畫出平移后的△A1B1C1,若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(ab),則點(diǎn)P的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)是  

3)在x軸上存在一點(diǎn)D,使△DBC的面積等于3,則點(diǎn)D的坐標(biāo)為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADBC,BC,垂足分別為D、F23180,試說明:GDCB,請(qǐng)補(bǔ)充說明過程,并在括號(hào)內(nèi)填上相應(yīng)的理由。

解:ADBC,EFBC(已知)

ADBEFB90( ),

EF//AD( ),

2180( ),

23180(已知),

13( ),

AB// ( ),

∴∠GDC=∠B( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形和正方形中,邊在邊上,正方形繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)

1)如圖2,當(dāng)時(shí),求證:;

2)在旋轉(zhuǎn)的過程中,設(shè)的延長線交直線于點(diǎn)如果存在某一時(shí)刻使得,請(qǐng)求出此時(shí)的長;若正方形繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)了,求旋轉(zhuǎn)過程中,點(diǎn)運(yùn)動(dòng)的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種新型生物醫(yī)藥產(chǎn)品,生產(chǎn)成本為2萬元/ 噸,每月生產(chǎn)能力為12噸,且生產(chǎn)出的產(chǎn)品都能銷售出去.這種產(chǎn)品部分內(nèi)銷,另一部分外銷(出口),內(nèi)銷與外銷的單價(jià) (單位:萬元/噸)與銷量的關(guān)系分別如圖1,圖2.

(1)如果該公司內(nèi)銷數(shù)量為x(單位:噸),內(nèi)、外銷單價(jià)分別為y 1 , y 2 ,求, 關(guān)于x的函數(shù)解析式;
(2)如果該公司內(nèi)銷數(shù)量為x(單位:噸),求內(nèi)銷獲得的毛利潤 關(guān)于x的函數(shù)解析式;
(3)請(qǐng)?jiān)O(shè)計(jì)一種銷售方案,使該公司本月能獲得最大毛利潤,并求出毛利潤的最大值.(毛利潤=銷售收入-生產(chǎn)成本).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:的兩條高交于點(diǎn),點(diǎn)分別是,的中點(diǎn),連接

求證:垂直平分;

.判斷以為頂點(diǎn)的四邊形的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案