【題目】某公園計劃在一個半徑為a米的圓形空地區(qū)域建綠化區(qū),現(xiàn)有兩種方案:方案一:如圖1,將圓四等分,中間建兩條互相垂直的柵欄,陰影部分種植草坪;方案二:建成如圖2所示的圓環(huán),其中小圓半徑剛好為大圓半徑的一半,陰影部分種植草坪.

(1)哪種方案中陰影部分的面積大?大多少平方米(結(jié)果保留π)

(2)如圖3,在方案二中的環(huán)形區(qū)域再圍一個最大的圓形區(qū)域種植花卉,求圖3中所有圓的周長之和(結(jié)果保留π).

【答案】1)方案一中陰影的面積大,大平方米;(2

【解析】

1)依據(jù)圖形確定每個陰影圖形的半徑,利用圓的面積公式即可求值,再進行大小比較.

2)利用(1)可知每個圓的半徑,用圓的周長=2r即可將每個圓的周長求出,相加可得結(jié)果.

解:方案一中陰影面積S1=

方案二中陰影面積S2=2=2

S1S2S1-S2=2-2=2

∴方案一中陰影面積最大,大2平方米.

(2)所有圓的周長和=2+=(米)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點,A、B兩點的坐標(biāo)分別為(﹣3,0)、(0,4),拋物線經(jīng)過點B,且頂點在直線x=上.

(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;

(2)若把△ABO沿x軸向右平移得到△DCE,點A、B、O的對應(yīng)點分別是D、C、E,當(dāng)四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;

(3)在(2)的條件下,連接CD,與拋物線的對稱軸交于點P,若點M是線段OB上的一個動點(點M與點O、B不重合),過點M作MN∥BD交x軸于點N,連接PM、PN,設(shè)OM的長為t,PMN的面積為S,求出S和t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時M點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,AB=ACD、E分別在AC、AB上,且BD=BC,AD=DE=EB, ∠A的度數(shù)等于( )

A. 36°B. 40°C. 45°D. 50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場在春節(jié)期間搞優(yōu)惠促銷活動,商場將29英寸和25英寸彩電共96臺分別以8折和7折出售,共得168400元。已知29英寸彩電原價為3000/臺,25英寸彩電原價為2000/臺,出售29英寸和25英寸彩電各多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘輪船在相距90千米的甲、乙兩地之間勻速航行,從甲地到乙地順流航行用6小時,逆流航行比順流航行多用4小時.

1)求該輪船在靜水中的速度和水流速度;

2)若在甲、乙兩地之間建立丙碼頭,使該輪船從甲地到丙地和從乙地到丙地所用的航行時間相同,問甲、丙兩地相距多少干米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】聲音在空氣中傳播的速度和氣溫有如下關(guān)系:

氣溫(℃)

0

5

10

15

20

聲速(m/s

331

334

337

340

343

1)上表反應(yīng)了___________________________之間的關(guān)系,其中_______________是自變量,________________________________的函數(shù)

2)根據(jù)表中數(shù)據(jù)的變化,你發(fā)現(xiàn)的規(guī)律是:氣溫每升高5℃,聲速______________,若用T表示氣溫,V表示聲速,請寫出聲速V與氣溫T之間的函數(shù)關(guān)系式V=________________

3)根據(jù)你發(fā)現(xiàn)的規(guī)律,回答問題:在30℃發(fā)生閃電的夏夜,小明在看到閃電6秒后聽到雷聲,那么發(fā)生打雷的地方距離小明大約有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(-3,﹣2)兩點.

(1)求m的值;

(2)根據(jù)所給條件,請直接寫出不等式k1x+b>的解集;

(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點, 且y1>y2,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識鏈接:

“轉(zhuǎn)化、化歸思想”是數(shù)學(xué)學(xué)習(xí)中常用的一種探究新知、解決問題的基本的數(shù)學(xué)思想方法,通過“轉(zhuǎn)化、化歸”通常可以實現(xiàn)化未知為已知,化復(fù)雜為簡單,從而使問題得以解決.

1)問題背景:已知:△ABC.試說明:∠A+B+C=180°.

問題解決:(填出依據(jù))

解:(1)如圖①,延長ABE,過點BBFAC.

BFAC(作圖)

∴∠1=C

2=A

∵∠2+ABC+1=180°(平角的定義)

∴∠A+ABC+C=180°(等量代換)

小結(jié)反思:本題通過添加適當(dāng)?shù)妮o助線,把三角形的三個角之和轉(zhuǎn)化成了一個平角,利用平角的定義,說明了數(shù)學(xué)上的一個重要結(jié)論“三角形的三個內(nèi)角和等于180°.

2)類比探究:請同學(xué)們參考圖②,模仿(1)的解決過程試說明“三角形的三個內(nèi)角和等于180°”

3)拓展探究:如圖③,是一個五邊形,請直接寫出五邊形ABCDE的五個內(nèi)角之和∠A+B+C+D+E= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分,為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學(xué)生的成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:

成績x/分

頻數(shù)

頻率

50≤x<60

10

0.05

 60≤x<70

30

0.15

 70≤x<80

40

n

 80≤x<90

m

0.35

 90≤x≤100

50

0.25

請根據(jù)所給信息,解答下列問題:

(1)m=   ,n=   

(2)請補全頻數(shù)分布直方圖;

(3)這次比賽成績的中位數(shù)會落在   分?jǐn)?shù)段;

(4)若成績在90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學(xué)生中成績“優(yōu)”等約有多少人?

查看答案和解析>>

同步練習(xí)冊答案