【題目】如圖,小巷左石兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離BC0.7米,梯子頂端到地面的距離AC2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),梯子頂端到地面的距離AD1.5米,求小巷有多寬.

【答案】2.7米.

【解析】

先根據(jù)勾股定理求出AB的長(zhǎng),同理可得出BD的長(zhǎng),進(jìn)而可得出結(jié)論.

RtACB中,∵∠ACB90°,BC0.7米,AC2.4米,

AB20.72+2.426.25

RtA′BD中,∵∠A′DB90°A′D1.5米,BD2+A′D2A′B′2

BD2+1.526.25,

BD24

BD0,

BD2米.

CDBC+BD0.7+22.7米.

答:小巷的寬度CD2.7米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).

(1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

(2)作出ABC關(guān)于y軸對(duì)稱的A′B′C′,并寫出點(diǎn)B′的坐標(biāo);

(3)P是x軸上的動(dòng)點(diǎn),在圖中找出使A′BP周長(zhǎng)最短時(shí)的點(diǎn)P,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)兩位數(shù),個(gè)位數(shù)比十位數(shù)大2,若把各位數(shù)字和十位數(shù)字對(duì)調(diào),則所得的新的兩位數(shù)比原數(shù)的兩倍少17.若設(shè)原數(shù)的個(gè)位數(shù)為,十位數(shù)字為,則下列方程組正確的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成推理過(guò)程

1)如圖,已知∠1=2,∠B=C,求證:ABCD

證明∵∠1=2(已知),

且∠1=CGD(  )

∴∠2=CGD(     ),

CEBF(  ),

C=BFD(  )

又∵∠B=C(已知),

BFD=B(  )

ABCD(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC在平面直角坐標(biāo)系中.

1)寫出ABC各頂點(diǎn)的坐標(biāo).

2)把ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得A'B'C',在圖中畫出A'B'C',并寫出A'、B'C'的坐標(biāo).

3)求出

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB= ,D是線段BC上的一個(gè)動(dòng)點(diǎn),以AD為直徑畫⊙O分別交AB、AC于E、F,連接EF,則線段EF長(zhǎng)度的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B兩地被池塘隔開,小明通過(guò)下列方法測(cè)出了A、B間的距離:先在AB外選一點(diǎn)C,然后測(cè)出AC,BC的中點(diǎn)M,N,并測(cè)量出MN的長(zhǎng)為6 m,由此他就知道了A、B間的距離.有關(guān)他這次探究活動(dòng)的描述錯(cuò)誤的是

A. AB=12 m B. MNAB

C. CMNCAB D. CMMA=12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=3x2 , y=-3x2 , y= x2+3共有的性質(zhì)是( )
A.開口向上
B.對(duì)稱軸是y軸
C.都有最高點(diǎn)
D.y隨x值的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把幾個(gè)圖形拼成一個(gè)新的圖形,再通過(guò)兩種不同的方法計(jì)算同一個(gè)圖形的面積,可以得到一個(gè)等式,也可以求出一些不規(guī)則圖形的面積.

例如,由圖1,可得等式:(a+2b)(a+b=a2+3ab+2b2

(1)如圖2,將幾個(gè)面積不等的小正方形與小長(zhǎng)方形拼成一個(gè)邊長(zhǎng)為a+b+c的正方形,試用不同的形式表示這個(gè)大正方形的面積,你能發(fā)現(xiàn)什么結(jié)論?請(qǐng)用等式表示出來(lái).

(2)利用(1)中所得到的結(jié)論,解決下面的問(wèn)題: 已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.

(3)如圖3,將兩個(gè)邊長(zhǎng)分別為ab的正方形拼在一起,BC,G三點(diǎn)在同一直線上,連接BDBF.若這兩個(gè)正方形的邊長(zhǎng)滿足a+b=10,ab=20,請(qǐng)求出陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案