【題目】將紙片△ABC沿DE折疊使點A落在A′處的位置.

(1)如果A′落在四邊形BCDE的內(nèi)部(如圖1),∠A′與∠1+∠2之間存在怎樣的數(shù)量關(guān)系?并說明理由.

(2)如果A′落在四邊形BCDE的BE邊上,這時圖1中的∠1變?yōu)?°角,則∠A′與∠2之間的關(guān)系是

(3)如果A′落在四邊形BCDE的外部(如圖2),這時∠A′與∠1、∠2之間又存在怎樣的數(shù)量關(guān)系?并說明理由.

【答案】(1)2∠A=∠1+∠2,(2)2∠A=∠2;(3)2∠A=∠2-∠1.

【解析】

試題分析:(1)根據(jù)折疊性質(zhì)得出∠AED=∠A′ED,∠ADE=∠A′DE,根據(jù)三角形內(nèi)角和定理得出∠AED+∠ADE=180°-∠A,代入∠1+∠2=180°+180°-2(∠AED+∠ADE)求出即可;

(2)根據(jù)三角形外角性質(zhì)得出∠DME=∠A′+∠1,∠2=∠A+∠DME,代入即可求出答案.

試題解析:(1)圖1中,2∠A=∠1+∠2,

理由是:∵延DE折疊A和A′重合,

∴∠AED=∠A′ED,∠ADE=∠A′DE,

∵∠AED+∠ADE=180°-∠A,∠1+∠2=180°+180°-2(∠AED+∠ADE),

∴∠1+∠2=360°-2=2∠A;

(2)2∠A=∠2,如圖2

∠2=∠A+∠EA′D=2∠A,

(3)如圖3,2∠A=∠2-∠1,

理由是:∵延DE折疊A和A′重合,

∴∠A=∠A′,

∵∠DME=∠A′+∠1,∠2=∠A+∠DME,

∴∠2=∠A+∠A′+∠1,

即2∠A=∠2-∠1.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,海中一小島上有一個觀測點A,某天上午9:00觀測到某漁船在觀測點A的西南方向上的B處跟蹤魚群由南向北勻速航行.當天上午9:30觀測到該漁船在觀測點A的北偏西60°方向上的C處.若該漁船的速度為每小時30海里,在此航行過程中,問該漁船從B處開始航行多少小時,離觀測點A的距離最近?(計算結(jié)果用根號表示,不取近似值).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了迎接“五一”小長假的購物高峰.某運動品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表:已知:用3600元購進甲種運動鞋的數(shù)量與用3000元購進乙種運動鞋的數(shù)量相同.

(1)求m的值;

(2)要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價﹣進價)不少于21600元,且不超過22440元,問該專賣店有多少種進貨方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E,F(xiàn)是四邊形ABCD對角線AC上的兩點,ADBC,DFBE,AE=CF.

求證:(1)AFD≌△CEB;(2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點(-1,-2)所在的象限是( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展“綠化家鄉(xiāng)、植樹造林”活動,為了解全校植樹情況,對該校甲、乙、丙、丁四個班級植樹情況進行了調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中的信息,完成下列問題:

(1)這四個班共植樹 棵;

(2)請你在答題卡上不全兩幅統(tǒng)計圖;

(3)求圖1中“甲”班級所對應的扇形圓心角的度數(shù);

(4)若四個班級植樹的平均成活率是95%,全校共植樹2000棵,請你估計全校種植的樹中成活的樹有多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:a2b﹣6ab2+9b3=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E、F分別是正方形ABCD的邊CD、AD上的點,且CE=DF,AE、BF相交于點O,下列結(jié)論:(1)AE=BF;(2)AEBF;(3)AO=OE;(4)SAOB=S四邊形DEOF中正確的有(

A.4個 B.3個 C.2個 D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一青蛙從點A(-1,0)處向右跳2個單位長度,再向上跳2個單位長度到點A′處,則點A′的坐標為    .

查看答案和解析>>

同步練習冊答案