對于平面直角坐標系xOy中的點P(a,b),若點的坐標為(,)(其中k為常數(shù),且),則稱點為點P的“k屬派生點”.
例如:P(1,4)的“2屬派生點”為(1+,),即(3,6).
(1)①點P的“2屬派生點” 的坐標為____________;
②若點P的“k屬派生點” 的坐標為(3,3),請寫出一個符合條件的點P的坐標____________;
(2)若點P在x軸的正半軸上,點P的“k屬派生點”為點,且△為等腰直角三角形,則k的值為____________;
(3)如圖, 點Q的坐標為(0,),點A在函數(shù)的圖象上,且點A是點B的“屬派生點”,當線段B Q最短時,求B點坐標.
(1)①;②(1,2)(答案不唯一);(2);(3).
解析試題分析:(1)①根據(jù)派生點的定義,點P 的“2屬派生點” 的坐標為(,),即.
②答案不唯一,只需橫、縱坐標之和為3即可,如(1,2).
(2)若點P在x軸的正半軸上,則P(a,0),點P的“k屬派生點”為點為(,).
∵且△為等腰直角三角形,∴.
(3)求出點B所在的直線,根據(jù)垂直線段最短的性質(zhì)即可求得B點坐標.
試題解析:(1)①.
②.(1,2).
(2).
(3)設(shè)B(a,b).
∵B的“屬派生點”是A,∴.
∵點A還在反比例函數(shù)的圖象上,
∴.∴.
∵,∴.∴.
∴B在直線上.
過Q作的垂線QB1,垂足為B1,
∵,且線段BQ最短,∴B1即為所求的點B.
∴易求得.
考點:1.新定義;2.開放型;3.等腰直角三角形的性質(zhì);4.曲線上點的坐標與方程的關(guān)系;5.垂直線段最短的性質(zhì).
科目:初中數(shù)學 來源: 題型:填空題
如圖,矩形ABCD在第一象限,AB在x軸正半軸上,AB=3,BC=1,直線經(jīng)過點C交x軸于點E,雙曲線經(jīng)過點D,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
若點A(﹣2,a),B(﹣1,b),C(3,c)在雙曲線(k>0)上,則a、b、c的大小關(guān)系為 (用“<”將a、b、c連接起來).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,矩形OABC的頂點B的坐標為(1,2),反比例函數(shù)y=(0<m<2)的圖象與AB交于點E,與BC交于點F,連接OE、OF、EF.
(1)若點E是AB的中點,則m= ,S△OEF= ;
(2)若S△OEF=2S△BEF,求點E的坐標;
(3)是否存在點E及y軸上的點M,使得△MFE與△BFE全等?若存在,寫出此時點E的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,點A,B分別在軸,軸上,點D在第一象限內(nèi),DC⊥軸于點C,AO=CD=2,AB=DA=,反比例函數(shù)的圖象過CD的中點E。
(1)求證:△AOB≌△DCA;
(2)求的值;
(3)△BFG和△DCA關(guān)于某點成中心對稱,其中點F在軸上,試判斷點G是否在反比例函數(shù)的圖象上,并說明理由。(
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,四邊形ABCD是平行四邊形,點A(1,0),B(3,1),C(3,3).反比例函數(shù)的函數(shù)圖象經(jīng)過點D,點P是一次函數(shù)y=kx+3-3k(k≠0)的圖象與該反比例函數(shù)圖象的一個公共點.
(1)求反比例函數(shù)的解析式;
(2)通過計算,說明一次函數(shù)y=kx+3-3k(k≠0)的圖象一定過點C;
(3)對于一次函數(shù)y=kx+3-3k(k≠0),當y隨x的增大而增大時,確定點P的橫坐標的取值范圍(不必寫出過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,反比例函數(shù)的圖象和矩形ABCD在第二象限,AD平行于x軸,且AB=2,AD=4,點C的坐標為(-2,4).
(1)直接寫出A、B、D三點的坐標;
(2)若將矩形只向下平移,矩形的兩個頂點恰好同時落在反比例函數(shù)的圖象上,求反比例函數(shù)的解析式和此時直線AC的解析式y(tǒng)=mx+n.并直接寫出滿足的x取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知反比例函數(shù)y=(k為常數(shù),k≠1).
(1)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;
(2)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(3)若其圖象的一支位于第二象限,在這一支上任取兩點 A(x1,y1)、B(x2,y2),當y1>y2時,試比較x1與x2的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
點P 在反比例函數(shù) 的圖象上,它關(guān)于軸的對稱點在一次函數(shù)的圖象上,求此反比例函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com