【題目】如圖,P為⊙O外一點,PA、PB為⊙O的切線,A、B為切點,AC為⊙O的直徑,PO交于⊙O于點E.
(1)試判斷∠APB與∠BAC的數(shù)量關(guān)系;
(2)若⊙O的半徑為4,P是⊙O外一動點,是否存在點P,使四邊形PAOB為正方形?若存在,請求出PO的長,并判斷點P的個數(shù)及其滿足的條件;若不存在,請說明理由.
【答案】
(1)解:連接BA,如圖1,
∵PA、PB為⊙O的切線,
∴OA⊥PA,OB⊥PB,
∴∠OAP=∠OBP=90°,
∴∠APB+∠AOB=180°,
而∠AOB+∠BOC=180°,
∴∠BOC=∠APB,
∵∠BOC=∠OAB+∠OBA,
而OA=OB,
∴∠OAB=∠OBA,
∴∠BOC=2∠BAC,
∴∠APB=2∠BAC;
(2)解:存在.
∵PA、PB為⊙O的切線,
∴OA⊥PA,OB⊥PB,
∴∠OAP=∠OBP=90°,
∴OA⊥OB時,四邊形PAOB為矩形,
而OA=OB,
∴四邊形PAOB為正方形,
∴OP= OA=4 ;
這樣的點P有無數(shù)個,當點P在以O點為圓心,4 為半徑的圓上時,四邊形PAOB為正方形.
【解析】(1)連接BA,如圖1,先根據(jù)切線的性質(zhì)得∴∠OAP=∠OBP=90°,再根據(jù)四邊形內(nèi)角和得到∠APB+∠AOB=180°,而∠AOB+∠BOC=180°,則∠BOC=∠APB,利用三角形外角性質(zhì)得∠BOC=2∠BAC,所以∠APB=2∠BAC,(2)由PA、PB為⊙O的切線得∠OAP=∠OBP=90°,所以當OA⊥OB時,四邊形PAOB為矩形,加上OA=OB,于是可判斷四邊形PAOB為正方形,根據(jù)正方形的性質(zhì)得OP= OA=4 ;由此得到這樣的點P有無數(shù)個,當點P在以O點為圓心,4 為半徑的圓上時,四邊形PAOB為正方形.
【考點精析】通過靈活運用勾股定理的概念和正方形的判定方法,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;先判定一個四邊形是矩形,再判定出有一組鄰邊相等;先判定一個四邊形是菱形,再判定出有一個角是直角即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】6月5日是世界環(huán)境日,某校組織了一次環(huán)保知識競賽,每班選25名同學參加比賽,成績分別為A、B、C、D四個等級,其中相應等級的得分依次記為100分、90分、80分、70分,學校將某年級的一班和二班的成績整理并繪制成統(tǒng)計圖: 根據(jù)以上提供的信息解答下列問題:
(1)把一班競賽成績統(tǒng)計圖補充完整;
(2)寫出下表中a、b、c的值:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
一班 | a | b | 90 |
二班 | 87.6 | 80 | c |
(3)請從以下給出的三個方面中任選一個對這次競賽成績的結(jié)果進行分析: ①從平均數(shù)和中位數(shù)方面比較一班和二班的成績;②從平均數(shù)和眾數(shù)方面比較一班和二班的成績;③從B級以上(包括B級)的人數(shù)方面來比較一班和二班的成績.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,BE交對角線AC于點E,DF∥BE交AC于點F.
(1)寫出圖中所有的全等三角形(不得添加輔助線);
(2)求證:BE=DF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠CFE為________度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.
(1)判斷BD和CE的位置關(guān)系,并說明理由;
(2)判斷AC和BD是否垂直,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°
(1)求證:①AC=BD;②∠APB=50°;
(2)如圖②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,則AC與BD間的等量關(guān)系為 ,∠APB的大小為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解學生課外閱讀的情況,對學生“平均每天課外閱讀的時間”進行了隨機抽樣調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:
(1)平均每天課外閱讀的時間為“0.5~1小時”部分的扇形圖的圓心角為多少度;
(2)本次一共調(diào)查了多少名學生;
(3)將條形圖補充完整;
(4)若該校有1680名學生,請估計該校有多少名學生平均每天課外閱讀的時間在0.5小時以下.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城市街道上行駛速度不得超過70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方30 m處,過了2 s后,測得小汽車與車速檢測儀間距離為50 m,這輛小汽車超速了嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,延長CD到E,使DE=CD,連接BE交AD于點F,交AC于點G.
(1)求證:AF=DF;
(2)若BC=2AB,DE=1,∠ABC=60°,求FG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com