【題目】小明家準(zhǔn)備給邊長為6m的正方形客廳用黑色和白色兩種瓷磚鋪設(shè),如圖所示:①黑色瓷磚區(qū)域:位于四個角的邊長相同的小正方形及寬度相等的回字型邊框(陰影部分),②白色瓷磚區(qū)域:四個全等的長方形及客廳中心的正方形(空白部分).設(shè)四個角上的小正方形的邊長為x(m).

(1)當(dāng)x=0.8時,若客廳中心的正方形瓷磚鋪設(shè)的面積為16m2,求回字型黑色邊框的寬度;

(2)若客廳中心的正方形邊長為4m,白色瓷磚區(qū)域的總面積為26m2,求x的值.

【答案】(1) 0.2;(2)

【解析】1)根據(jù)題意可知客廳中心的正方形邊長為 4m, 再結(jié)合圖形即可求得回字型黑色邊框的寬度;

(2)根據(jù)白色瓷磚區(qū)域Ⅱ的面積由四個全等的長方形及客廳中心的正方形組成,可得關(guān)于x的方程,解方程后進行討論即可得答案.

(1)由已知可得客廳中心的正方形邊長為 4m,

由圖可得邊框?qū)挾葹?/span> 6 4 0.8 2 0.2 m,

即回字型黑色邊框的寬度為0.2m;

(2)由已知可列方程:

4x6 2x 16 26,

解得:x1,x2,

當(dāng) x=時, 2 4 9 >6,不符合實際,舍去,

x=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若∠AOB=100°,∠BOD=60°,∠AOC=70°時,則∠COD_____°(自己畫圖并計算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著社會的發(fā)展,私家車變得越來越普及,使用節(jié)能低油耗汽車,對環(huán)保有著非常積極的意義,某市有關(guān)部門對本市的某一型號的若干輛汽車,進行了一項油耗抽樣實驗:即在同一條件下,被抽樣的該型號汽車,在油耗1L的情況下,所行駛的路程(單位:km)進行統(tǒng)計分析,結(jié)果如圖所示:
(注:記A為12~12.5,B為12.5~13,C為13~13.5,D為13.5~14,E為14~14.5)
請依據(jù)統(tǒng)計結(jié)果回答以下問題:
(1)試求進行該試驗的車輛數(shù);
(2)請補全頻數(shù)分布直方圖;
(3)若該市有這種型號的汽車約900輛(不考慮其他因素),請利用上述統(tǒng)計數(shù)據(jù)初步預(yù)測,該市約有多少輛該型號的汽車,在耗油1L的情況下可以行駛13km以上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家超市以相同的價格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計購買商品超出300元之后,超出部分按原價8折優(yōu)惠;在乙超市累計購買商品超出200元之后,超出部分按原價8.5折優(yōu)惠.設(shè)顧客預(yù)計累計購物元().

(1)請用含的代數(shù)式分別表示顧客在兩家超市購物所付的費用;

(2)李明準(zhǔn)備購買500元的商品,你認(rèn)為他應(yīng)該去哪家超市?請說明理由;

(3)計算一下,李明購買多少元的商品時,到兩家超市購物所付的費用一樣?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若拋物線y=﹣x2+3與x軸圍成封閉區(qū)域(邊界除外)內(nèi)整點(點的橫、縱坐標(biāo)都是整數(shù))的個數(shù)為k,則反比例函數(shù)y= (x>0)的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB=4,AD=5,E為射線BC上一點,DFAEF,連結(jié)DE.

(1)當(dāng)E在線段BC上時

①若DE=5,求BE的長;

②若CE=EF,求證:AD=AE;

(2)連結(jié)BF,在點E的運動過程中:

①當(dāng)ABF是以AB為底的等腰三角形時,求BE的長;

②記ADF的面積為S1,記DCE的面積為S2,當(dāng)BFDE時,請直接寫出S1:S2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線a,b被c所截,則∠1與∠2是(
A.同位角
B.內(nèi)錯角
C.同旁內(nèi)角
D.鄰補角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中點,E,F(xiàn)分別是AC,BC上的點(點E不與端點A,C重合),且AE=CF,連接EF并取EF的中點O,連接DO并延長至點G,使GO=OD,連接DE,DF,GE,GF.
(1)求證:四邊形EDFG是正方形;
(2)當(dāng)點E在什么位置時,四邊形EDFG的面積最。坎⑶笏倪呅蜤DFG面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級全體同學(xué)參加了某項捐款活動,隨機抽查了部分同學(xué)捐款的情況統(tǒng)計如圖所示.

(1)本次共抽查學(xué)生________人,并將條形圖補充完整;

(2)捐款金額的眾數(shù)是________,平均數(shù)是________,中位數(shù)為________.

(3)在八年級600名學(xué)生中,捐款20元及以上(含20元)的學(xué)生估計有多少人?

查看答案和解析>>

同步練習(xí)冊答案