【題目】如圖,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中點,E,F(xiàn)分別是AC,BC上的點(點E不與端點A,C重合),且AE=CF,連接EF并取EF的中點O,連接DO并延長至點G,使GO=OD,連接DE,DF,GE,GF.
(1)求證:四邊形EDFG是正方形;
(2)當(dāng)點E在什么位置時,四邊形EDFG的面積最。坎⑶笏倪呅蜤DFG面積的最小值.
【答案】
(1)證明:連接CD,如圖1所示.
∵△ABC為等腰直角三角形,∠ACB=90°,D是AB的中點,
∴∠A=∠DCF=45°,AD=CD.
在△ADE和△CDF中, ,
∴△ADE≌△CDF(SAS),
∴DE=DF,∠ADE=∠CDF.
∵∠ADE+∠EDC=90°,
∴∠EDC+∠CDF=∠EDF=90°,
∴△EDF為等腰直角三角形.
∵O為EF的中點,GO=OD,
∴GD⊥EF,且GD=2OD=EF,
∴四邊形EDFG是正方形
(2)解:過點D作DE′⊥AC于E′,如圖2所示.
∵△ABC為等腰直角三角形,∠ACB=90°,AC=BC=4,
∴DE′= BC=2,AB=4 ,點E′為AC的中點,
∴2≤DE<2 (點E與點E′重合時取等號).
∴4≤S四邊形EDFG=DE2<8.
∴當(dāng)點E為線段AC的中點時,四邊形EDFG的面積最小,該最小值為4.
【解析】(1)連接CD,根據(jù)等腰直角三角形的性質(zhì)可得出∠A=∠DCF=45°、AD=CD,結(jié)合AE=CF可證出△ADE≌△CDF(SAS),根據(jù)全等三角形的性質(zhì)可得出DE=DF、ADE=∠CDF,通過角的計算可得出∠EDF=90°,再根據(jù)O為EF的中點、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可證出四邊形EDFG是正方形;(2)過點D作DE′⊥AC于E′,根據(jù)等腰直角三角形的性質(zhì)可得出DE′的長度,從而得出2≤DE<2 ,再根據(jù)正方形的面積公式即可得出四邊形EDFG的面積的最小值.
【考點精析】認(rèn)真審題,首先需要了解等腰直角三角形(等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°),還要掌握二次函數(shù)的最值(如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為4,點P從點A運動到點B,速度為1,點Q沿B﹣C﹣D運動,速度為2,點P、Q同時出發(fā),則△BPQ的面積y與運動時間t(t≤4)的函數(shù)圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中的假命題是( )
A. 過直線外一點有且只有一條直線與這條直線平行
B. 平行于同一直線的兩條直線平行
C. 直線y=2x﹣1與直線y=2x+3一定互相平行
D. 如果兩個角的兩邊分別平行,那么這兩個角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家飲水機(jī)中原有水的溫度為20℃,通電開機(jī)后,飲水機(jī)自動開始加熱[此過程中水溫y(℃)與開機(jī)時間x(分)滿足一次函數(shù)關(guān)系],當(dāng)加熱到100℃時自動停止加熱,隨后水溫開始下降[此過程中水溫y(℃)與開機(jī)時間x(分)成反比例關(guān)系],當(dāng)水溫降至20℃時,飲水機(jī)又自動開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:
(1)當(dāng)0≤x≤8時,求水溫y(℃)與開機(jī)時間x(分)的函數(shù)關(guān)系式;
(2)求圖中t的值;
(3)若小明在通電開機(jī)后即外出散步,請你預(yù)測小明散步45分鐘回到家時,飲水機(jī)內(nèi)的溫度約為多少℃?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.如果兩個角相等,那么這兩個角是對頂角
B.內(nèi)錯角相等
C.過直線外一點有且只有一條直線與已知直線平行
D.一個角的補角一定是鈍角
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com