【題目】如圖,在△ABC中,∠BAC65°,以點A為旋轉(zhuǎn)中心,將△ABC繞點A逆時針旋轉(zhuǎn),得△AB'C',連接BB',若BB'AC,則∠BAC′的大小是( 。

A.15°B.25°C.35°D.45°

【答案】A

【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得AC′=AC,∠BAB=∠CAC,再根據(jù)等腰三角形的性質(zhì)得∠ABB=∠ABB′,然后根據(jù)平行線的性質(zhì)得到∠ABB=∠ABB′=65°,于是得到結(jié)論.

∵△ABC繞點A逆時針旋轉(zhuǎn)到△ABC′,

AC′=AC,∠BAB=∠CAC

∴∠ABB=∠ABB′,

BB'AC

∴∠ABB′=∠CAB65°,

∴∠ABB=∠ABB′=65°,

∴∠BAB′=180°﹣2×65°=50°,

∴∠BAB50°,

∴∠BAC′=15°,

故選:A

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABCA逆時針方向旋轉(zhuǎn)40°得到△ADE,點B經(jīng)過的路徑為弧BD,是圖中陰影部分的面積為( 。

A. π﹣6 B. π C. π﹣3 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點O位于坐標原點,斜邊AB垂直于x軸,頂點A在函數(shù)y1x0)的圖象上,頂點B在函數(shù)y2x0)的圖象上,∠ABO30°,則_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在△ABC和△EDC中,ACCECBCD,∠ACB=∠ECD,ABCE交于F,EDAB、BC分別交于MH

1)求證:CFCH;

2)如圖(2),△ABC不動,將△EDC繞點C旋轉(zhuǎn)到∠BCE=時,試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】312日是我國義務(wù)植樹節(jié)。某校組織學生開展義務(wù)植樹活動,在活動結(jié)束后隨機調(diào)查了40名學生每人植樹的棵數(shù),根據(jù)調(diào)查獲取的樣本數(shù)據(jù),制作了不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖.請根據(jù)相關(guān)信息,解答下列問題:

(Ⅰ)扇形統(tǒng)計圖中m的值是_____________,補全條形統(tǒng)計圖

(Ⅱ)求抽取的這部分學生植樹棵數(shù)的平均數(shù);

(Ⅲ)若本次活動共有320名學生參加,估計植樹棵數(shù)超過8棵的約有多少人。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ADBCD,BD=AD,DG=DC,EF分別是BG,AC的中點.

1)求證:DE=DF,DEDF;

2)連接EF,若AC=10,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,∠ABC30°,BC2.將△ABC繞點C逆時針旋轉(zhuǎn)某個角度后得到△ABC,當點A的對應(yīng)點A′落在AB邊上時,陰影部分的面積為___________

查看答案和解析>>

同步練習冊答案