【題目】圖甲是小張同學設計的帶圖案的花邊作品,該作品由形如圖乙的矩形圖案設計拼接面成(不重疊,無縫隙).圖乙中,點E、F、G、H分別為矩形AB、BC、CD、DA的中點,若AB=4,BC=6,則圖乙中陰影部分的面積為
_____.
【答案】
【解析】
根據(jù)S陰=S菱形PHQF﹣2S△HTN,再求出菱形PHQF的面積,△HTN的面積即可解決問題.
如圖,設FM=HN=a.
由題意點E、F、G、H分別為矩形AB、BC、CD、DA的中點,
∴四邊形DFBH和四邊形CFAH為平行四邊形,
∴DF∥BH,CH∥AF,
∴四邊形HQFP是平行四邊形
又HP=CH=DP=PF,
∴平行四邊形HQFP是菱形,它的面積=S矩形ABCD=×4×6=6,
∵FM∥BJ,CF=FB,
∴CM=MJ,
∴BJ=2FM=2a,
∵EJ∥AN,AE=EB,
∴BJ=JN=2a,
∵S△HBC=64=12,HJ=BH,
∴S△HCJ=×12=,
∵TN∥CJ,
∴△HTN∽△HCJ,
∴=()2=,
∴S△HTN=×=,
∴S陰=S菱形PHQF﹣2S△HTN=6﹣=,
故答案為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=6cm,AD=10cm,點E、F在矩形ABCD的邊AB、AD上運動,將△AEF沿EF折疊,使點A′在BC邊上,當折痕EF移動時,點A′在BC邊上也隨之移動.則A′C的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABO,點B在軸上,∠ABO=90°,∠AOB=30°,OB=,反比例函數(shù)的圖象經過OA的中點C,交AB于點D.
(1)求反比例函數(shù)的表達式;
(2)求△OCD的面積;
(3)點P是軸上的一個動點,請直接寫出使△OCP為直角三角形的點P坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3經過點A(2,﹣3),與x軸負半軸交于點B,與y軸交于點C,且OC=3OB.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一點P,使PB+PC的值最小,求點P的坐標;
(3)點M在拋物線上,點N在拋物線的對稱軸上,是否存在以點A,B,M,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】傳統(tǒng)的端午節(jié)即將來臨,某企業(yè)接到一批粽子生產任務,約定這批粽子的出廠價為每只4元,按要求在20天內完成.為了按時完成任務,該企業(yè)招收了新工人,設新工人李明第x天生產的粽子數(shù)量為y只,y與x滿足如下關系:
y=
(1)李明第幾天生產的粽子數(shù)量為280只?
(2)如圖,設第x天生產的每只粽子的成本是p元,p與x之間的關系可用圖中的函數(shù)圖象來刻畫.若李明第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價-成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣3與x軸分別交于A,B兩點(點A在點B的左邊),與y軸交于點C,頂點為D.
(1)如圖1,求△BCD的面積;
(2)如圖2,P是拋物線BD段上一動點,連接CP并延長交x軸于E,連接BD交PC于F,當△CDF的面積與△BEF的面積相等時,求點E和點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;
(3)過點B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的兩根分別為﹣3和1;④b2﹣4ac>0,其中正確的命題有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校七年級一班和二班各派出10名學生參加一分鐘跳繩比賽,成績如下表:
(1)兩個班級跳繩比賽成績的眾數(shù)、中位數(shù)、平均數(shù)、方差如下表:
表中數(shù)據(jù)a= ,b= ,c= .
(2)請用所學的統(tǒng)計知識,從兩個角度比較兩個班跳繩比賽的成績.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com