【題目】如圖,已知RtABO,點(diǎn)B軸上,∠ABO=90°,∠AOB=30°,OB=,反比例函數(shù)的圖象經(jīng)過OA的中點(diǎn)C,交AB于點(diǎn)D.

1)求反比例函數(shù)的表達(dá)式;

2)求△OCD的面積;

3)點(diǎn)P軸上的一個(gè)動(dòng)點(diǎn),請(qǐng)直接寫出使△OCP為直角三角形的點(diǎn)P坐標(biāo).

【答案】1;(2)面積為;(3P2,0)或(4,0

【解析】

1)解直角三角形求得AB,作CEOBE,根據(jù)平行線分線段成比例定理和三角形中位線的性質(zhì)求得C的坐標(biāo),然后根據(jù)待定系數(shù)法即可求得反比例函數(shù)的解析式;

2)補(bǔ)形法,求出各點(diǎn)坐標(biāo),SOCD =SAOB-SACD- SOBD;

3)分兩種情形:①∠OPC=90°.②∠OCP=90°,分別求解即可.

解:(1)∵∠ABO=90°,∠AOB=30°,OB=,

AB= OB=2,

CEOBE
∵∠ABO=90°,
CEAB
OC=AC,
OE=BE=OB=,CE=AB=1,

C,1),

∵反比例函數(shù)x0)的圖象經(jīng)過OA的中點(diǎn)C

1=,∴k=,

∴反比例函數(shù)的關(guān)系式為

2)∵OB=,

D的橫坐標(biāo)為,

代入得,y=,

D,),

BD=,

AB=,

AD=

SOCD =SAOB-SACD- SOBD =OBAB-ADBE-BDOB=

3)當(dāng)∠OPC=90°時(shí),點(diǎn)P的橫坐標(biāo)與點(diǎn)C的橫坐標(biāo)相等,C22),
P2,0).
當(dāng)∠OCP=90°時(shí).
C2,2),
∴∠COB=45°
∴△OCP為等腰直角三角形.
P4,0).
綜上所述,點(diǎn)P的坐標(biāo)為(2,0)或(4,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四組家庭參加親子活動(dòng),AB、C、D分別代表四個(gè)家長(zhǎng),他們的孩子分別是a、bc、d,若主持人隨機(jī)從家長(zhǎng)、孩子中各選擇一個(gè),請(qǐng)你用樹狀圖或列表的方法求出選中的兩人剛好是同一個(gè)家庭的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:各類方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來解.求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于去分母可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.

轉(zhuǎn)化的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)問題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;

(2)拓展:用轉(zhuǎn)化思想求方程的解;

(3)應(yīng)用:如圖,已知矩形草坪ABCD的長(zhǎng)AD=8m,寬AB=3m,小華把一根長(zhǎng)為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C.求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)數(shù)學(xué)興趣小組為了測(cè)得該校地下停車場(chǎng)的限高CD,在課外活動(dòng)時(shí)間測(cè)得下列數(shù)據(jù):如圖,從地面E點(diǎn)測(cè)得地下停車場(chǎng)的俯角為30°,斜坡AE的長(zhǎng)為16米,地面B點(diǎn)(E點(diǎn)在同一個(gè)水平線)距停車場(chǎng)頂部C點(diǎn)(A、C、B在同一條直線上且與水平線垂直)2米.試求該校地下停車場(chǎng)的高度AC及限高CD(結(jié)果精確到0.1米,1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,分析下列四個(gè)結(jié)論:①abc0;②b2-4ac0;③;④a+b+c0.其中正確的結(jié)論有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=4,BC=3,D是以點(diǎn)A為圓心2為半徑的圓上一點(diǎn),連接BD,MBD的中點(diǎn),則線段CM長(zhǎng)度的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)A-30),與y軸交于點(diǎn)B0,4),在第一象限內(nèi)有一點(diǎn)Pm,n),且滿足4m+3n=12.

1)求二次函數(shù)解析式.

2)若以點(diǎn)P為圓心的圓與直線AB、x軸相切,求點(diǎn)P的坐標(biāo).

3)若點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)A′,點(diǎn)C在對(duì)稱軸上,且2CBA+PA′O=90.求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖甲是小張同學(xué)設(shè)計(jì)的帶圖案的花邊作品,該作品由形如圖乙的矩形圖案設(shè)計(jì)拼接面成(不重疊,無縫隙).圖乙中,點(diǎn)E、F、G、H分別為矩形AB、BC、CD、DA的中點(diǎn),若AB4BC6,則圖乙中陰影部分的面積為

_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解今年九年級(jí)學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,在中考考前適應(yīng)性訓(xùn)練測(cè)試后,對(duì)九年級(jí)全體同學(xué)的數(shù)學(xué)成績(jī)作了統(tǒng)計(jì)分析,按照成績(jī)高低分為A、B、C、D四個(gè)等級(jí)并繪制了如圖1和圖2的統(tǒng)計(jì)圖(均不完整),請(qǐng)結(jié)合圖中所給出的信息解答問題:

1)該校九年級(jí)學(xué)生共有 .

2)補(bǔ)全條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖.(要求:請(qǐng)將扇形統(tǒng)計(jì)圖的空白部分按比例分成兩部分.

查看答案和解析>>

同步練習(xí)冊(cè)答案