【題目】已知,點O是等邊△ABC內(nèi)的任一點,連接OA,OB,OC.
(1)如圖1,已知∠AOB=150°,∠BOC=120°,將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC.
①∠DAO的度數(shù)是 ;
②用等式表示線段OA,OB,OC之間的數(shù)量關(guān)系,并證明;
(2)設(shè)∠AOB=α,∠BOC=β.
①當α,β滿足什么關(guān)系時,OA+OB+OC有最小值?請在圖2中畫出符合條件的圖形,并說明理由;
②若等邊△ABC的邊長為1,直接寫出OA+OB+OC的最小值.
【答案】(1)90°;②線段OA,OB,OC之間的數(shù)量關(guān)系是OA2+OB2=OC2,證明見試題解析;
(2)①當α=β=120°時,OA+OB+OC有最小值.證明見試題解析;②線段OA,OB,OC之間的數(shù)量關(guān)系是OA2+OB2=OC2,證明見試題解析。
【解析】
試題分析:(1)①根據(jù)周角的定義得到∠AOC=360°﹣120°﹣150°=90°,由于將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,于是得到∠OCD=60°,∠D=∠BOC=120°,根據(jù)四邊形的內(nèi)角和即可得到結(jié)論;②如圖1,連接OD,由于△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,得到△ADC≌△BOC,∠OCD=60°,根據(jù)全等三角形的性質(zhì)得到CD=OC,∠ADC=∠BOC=120°,AD=OB,推出△OCD是等邊三角形,根據(jù)等邊三角形的性質(zhì)得到OC=OD=CD,∠COD=∠CDO=60°,由于∠AOB=150°,∠BOC=120°,得到∠AOC=90°,求得∠AOD=30°,∠ADO=60°,根據(jù)勾股定理即可得到結(jié)論;
(2)①如圖2,由旋轉(zhuǎn)的性質(zhì)得到O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC..推出△OC O′是等邊三角形,根據(jù)等邊三角形的性質(zhì)得到OC=O′C=OO′,∠COO′=∠CO′O=60°,由于∠AOB=∠BOC=120°,得到∠AOC=∠A′O′C=120°,推出四點B,O,O′,A′共線,即可得到結(jié)論,②根據(jù)①的結(jié)論即可得到結(jié)果.
試題解析:(1)①∠AOB=150°,∠BOC=120°,∴∠AOC=360°﹣120°﹣150°=90°,
∵將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,
∴∠OCD=60°,∠D=∠BOC=120°,
∴∠DAO=360°﹣∠AOC﹣∠OCD﹣∠D=90°,
故答案為:90°;
②線段OA,OB,OC之間的數(shù)量關(guān)系是OA2+OB2=OC2,
如圖1,連接OD,
∵△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,
∴△ADC≌△BOC,∠OCD=60°,∴CD=OC,∠ADC=∠BOC=120°,AD=OB,
∴△OCD是等邊三角形,∴OC=OD=CD,∠COD=∠CDO=60°,
∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,
∴∠AOD=30°,∠ADO=60°,∴∠DAO=90°,
在Rt△ADO中,∠DAO=90°,∴OA2+OB2=OD2,∴OA2+OB2=OC2;
(2)①當α=β=120°時,OA+OB+OC有最小值.
如圖2,將△AOC繞點C按順時針方向旋轉(zhuǎn)60°得△A′O′C,連接OO′,
∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°,
∴O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC.
∴△OC O′是等邊三角形,∴OC=O′C=OO′,∠COO′=∠CO′O=60°,
∵∠AOB=∠BOC=120°,∴∠AOC=∠A′O′C=120°,
∴∠BOO′=∠OO′A′=180°,∴四點B,O,O′,A′共線,
∴OA+OB+OC=O′A′+OB+OO′=BA′時值最。
②∵∠AOB=∠BOC=120°,∴∠AOC=120°,∴O為△ABC的中心,
∵四點B,O,O′,A′共線,∴BD⊥AC,∵將△AOC繞點C按順時針方向旋轉(zhuǎn)60°得△A′O′C,
∴A′C=AC=BC,∴A′B=2BD,在Rt△BCD中,BD=BC=,∴A′B=,
∴當?shù)冗?/span>△ABC的邊長為1時,OA+OB+OC的最小值A(chǔ)′B=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOB:∠BOC=3:5,OD、OE分別是∠AOB和∠BOC的平分線,若∠DOE=60°,求∠AOB和∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩輛汽車沿同一路線從A地前往B地,甲以a千米/時的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙在甲出發(fā)2小時后勻速前往B地,設(shè)甲、乙兩車與A地的路程為s(千米),甲車離開A地的時間為t(時),s與t之間的函數(shù)圖象如圖所示.
(1)求a和b的值.
(2)求兩車在途中相遇時t的值.
(3)當兩車相距60千米時,t= 時.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售A、B兩種型號計算器,A型號計算器的進貨價格為每臺30元,B型號計算器的進貨價格為每臺40元. 商場銷售5臺A型號和1臺B型號計算器,可獲利潤76元;銷售6臺A型號和3臺B型號計算器,可獲利潤120元.
(1)分別求商場銷售A、B兩種型號計算器每臺的銷售價格.
(2)商場準備用不多于2 500元的資金購進A、B兩種型號計算器共70臺,問最少需要購進A型號的計算器多少臺?【利潤=銷售價格-進貨價格】
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(-1,2),且與x軸交點的橫坐標分別為x1,x2,其中-2<x1<-1,0<x2<1,下列結(jié)論:①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac,其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com