【題目】如圖,點(diǎn)O是直線AE上的一點(diǎn),OC是∠AOD的平分線,∠BOD=∠AOD.
(1)若∠BOD=20°,求∠BOC的度數(shù);
(2)若∠BOC=n°,用含有n的代數(shù)式表示∠EOD的大。
【答案】(1)10°;(2)180°﹣6n
【解析】
(1)根據(jù)∠BOD=∠AOD.∠BOD=20°,可求出∠AOD,進(jìn)而求出答案;
(2)設(shè)∠BOD的度數(shù),表示∠AOD,用含有n的代數(shù)式表示∠AOD,從而表示∠DOE.
解:(1)∵∠BOD=∠AOD.∠BOD=20°,
∴∠AOD=20°×3=60°,
∵OC是∠AOD的平分線,
∴∠AOC=∠COD=∠AOD=×60°=30°,
∴∠BOC=∠COD﹣∠BOD=30°﹣20°=10°;
(2)設(shè)∠BOD=x,則∠AOD=3x,
有(1)得,∠BOC=∠COD﹣∠BOD,
即:n=x﹣x,解得:x=2n,
∴∠AOD=3∠BOD=6n,
∠EOD=180°﹣∠AOD=180°﹣6n,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
已知,,,…都是不等于0的有理數(shù),若,求的值.
解:當(dāng)時(shí),;當(dāng)時(shí),,所以參照以上解答,試探究以下問(wèn)題:
(1)若,求的值
(2)若,則的值為__________;
(3)由(1)、(2)試猜想,共有__________個(gè)不同的值,在這些不同的值中,最大的值和最小的值的差等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=108°,EF、MN分別是AB、AC的垂直平分線,點(diǎn)E、N在BC上,則∠EAN等于( )
A. 72°B. 54°C. 36°D. 18°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,過(guò)點(diǎn)O作兩條射線OM、ON,且∠AOM=∠CON=90°
(1)若OC平分∠AOM,求∠AOD的度數(shù).
(2)若∠1=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】墻上釘著用一根彩繩圍成的梯形形狀的飾物,如圖實(shí)線所示(單位:cm).小穎將梯形下底的釘子去掉,并將這條彩繩釘成一個(gè)長(zhǎng)方形,如圖虛線所示.小穎所釘長(zhǎng)方形的長(zhǎng)、寬各為多少厘米?如果設(shè)長(zhǎng)方形的長(zhǎng)為xcm,根據(jù)題意,可得方程為( )
A.2(x+10)=10×4+6×2B.2(x+10)=10×3+6×2
C.2x+10=10×4+6×2D.2(x+10)=10×2+6×2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班對(duì)道德與法治,歷史,地理三門程的選考情況進(jìn)行調(diào)研,數(shù)據(jù)如下:
科目 | 道德與法治 | 歷史 | 地理 |
選考人數(shù)(人) | 19 | 13 | 18 |
其中道德與法治,歷史兩門課程都選了的有3人,歷史,地理兩門課程都選了的有4人,該班至多有多少學(xué)生( )
A.41B.42C.43D.44
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠A=60°,BD,CE是△ABC的兩條角平分線,且BD,CE交于點(diǎn)F,如圖所示,用等式表示BE,BC,CD這三條線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;
曉東通過(guò)觀察,實(shí)驗(yàn),提出猜想:BE+CD=BC,他發(fā)現(xiàn)先在BC上截取BM,使BM=BE,連接FM,再利用三角形全等的判定和性質(zhì)證明CM=CD即可.
(1)下面是小東證明該猜想的部分思路,請(qǐng)補(bǔ)充完整;
①在BC上截取BM,使BM=BE,連接FM,則可以證明△BEF與______全等,判定它們?nèi)鹊囊罁?jù)是______;
②由∠A=60°,BD,CE是△ABC的兩條角平分線,可以得出∠EFB=______°;
(2)請(qǐng)直接利用①,②已得到的結(jié)論,完成證明猜想BE+CD=BC的過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:“問(wèn)有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題講的是:有一塊三角形沙田,三條邊長(zhǎng)分別為5里,12里,13里,問(wèn)這塊沙田面積有多大?題中“里”是我國(guó)市制長(zhǎng)度單位,1里=500米,則該沙田的面積為( 。
A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,E是邊CD上一點(diǎn)(點(diǎn)E不與點(diǎn)C、D重合),連結(jié)BE.
(感知)如圖①,過(guò)點(diǎn)A作AF⊥BE交BC于點(diǎn)F.易證△ABF≌△BCE.(不需要證明)
(探究)如圖②,取BE的中點(diǎn)M,過(guò)點(diǎn)M作FG⊥BE交BC于點(diǎn)F,交AD于點(diǎn)G.
(1)求證:BE=FG.
(2)連結(jié)CM,若CM=1,則FG的長(zhǎng)為 .
(應(yīng)用)如圖③,取BE的中點(diǎn)M,連結(jié)CM.過(guò)點(diǎn)C作CG⊥BE交AD于點(diǎn)G,連結(jié)EG、MG.若CM=3,則四邊形GMCE的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com