【題目】已知拋物線(xiàn)yx2+2m1x2mm0.5)的最低點(diǎn)的縱坐標(biāo)為﹣4

1)求拋物線(xiàn)的解析式;

2)如圖1,拋物線(xiàn)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,D為拋物線(xiàn)上的一點(diǎn),BD平分四邊形ABCD的面積,求點(diǎn)D的坐標(biāo);

3)如圖2,平移拋物線(xiàn)yx2+2m1x2m,使其頂點(diǎn)為坐標(biāo)原點(diǎn),直線(xiàn)y=﹣2上有一動(dòng)點(diǎn)P,過(guò)點(diǎn)P作兩條直線(xiàn),分別與拋物線(xiàn)有唯一的公共點(diǎn)E、F(直線(xiàn)PE、PF不與y軸平行),求證:直線(xiàn)EF恒過(guò)某一定點(diǎn).

【答案】1yx2+2x3;(2D(﹣,﹣);(3)見(jiàn)解析

【解析】

1)先求出頂點(diǎn)坐標(biāo),由最低點(diǎn)的縱坐標(biāo)為﹣4,可列方程,即可求解;

2)連ACBDE,過(guò)AAMBDM,過(guò)CCNBDN,由三角形面積關(guān)系和全等三角形的性質(zhì)可求點(diǎn)E坐標(biāo),可求BD解析式,即可求點(diǎn)D坐標(biāo);

3)設(shè)Et,t2),Fn,n2),可求PE解析式,由與拋物線(xiàn)有唯一的公共點(diǎn),可求k12t,即可求點(diǎn)P橫坐標(biāo),可得tn=﹣2,設(shè)直線(xiàn)EF的解析式為ykx+b,得x2kxb0,可求b2,即可得直線(xiàn)EF恒過(guò)定點(diǎn)(0,2).

解:(1)∵yx2+2m1x2m=(x+m0.52m2m0.25

∴頂點(diǎn)坐標(biāo)為(0.5m,﹣m2m0.25

∵最低點(diǎn)的縱坐標(biāo)為﹣4,

∴﹣m2m0.25=﹣4,即4m2+4m150,

m1.5或﹣2.5,

m0.5,∴m1.5

∴拋物線(xiàn)的解析式為yx2+2x3;

2)∵yx2+2x3x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

A(﹣3,0),B1,0),C0,﹣3).

如圖,連ACBDE,過(guò)AAMBDM,過(guò)CCNBDN

BD平分四邊形ABCD的面積,

SABDSCBD,

BD×AMBD×CN

AMCN,且∠AEM=∠CMN,∠AME=∠CNE90°

∴△AEM≌△CENAAS),

AECE

E(﹣1.5,﹣1.5),且B1,0),

∴直線(xiàn)BE的解析式為y0.6x0.6

0.6x0.6x2+2x3,

解得x1=﹣,x21,

D(﹣,﹣).

3)由題意可得平移后解析式為yx2,

設(shè)Ett2),Fn,n2),

設(shè)直線(xiàn)PEyk1xt+t2,

由題意可得 x2k1x+k1tt20

∴△=k124k1tt2)=(k12t20,

k12t

∴直線(xiàn)PEy2txt+t2,即y2txt2

y=﹣2,得xP,

同理,設(shè)直線(xiàn)PFyk2xn+n2,

xP,

tn,

tn=﹣2

設(shè)直線(xiàn)EF的解析式為ykx+b,得x2kxb0

xExF=﹣b,即tn=﹣b,

b2

∴直線(xiàn)EFykx+2,過(guò)定點(diǎn)(0,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC在平面直角坐標(biāo)系中,∠ACB90°,ACBC,A的坐標(biāo)是(0,m)(m0),點(diǎn)C的坐標(biāo)是(2,0),點(diǎn)Bx軸上方.

1)如圖1所示,若點(diǎn)By軸上,則m的值是   ;

2)如圖2所示,BCy軸交于點(diǎn)D

m=﹣6,求點(diǎn)B的坐標(biāo);

y軸恰好平分∠BAC,求OD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生會(huì)準(zhǔn)備調(diào)查六年級(jí)學(xué)生參加“武術(shù)類(lèi)”、“書(shū)畫(huà)類(lèi)”、“棋牌類(lèi)”、“器樂(lè)類(lèi)”四類(lèi)校本課程的人數(shù).

(1)確定調(diào)查方式時(shí),甲同學(xué)說(shuō):“我到六年級(jí)(1)班去調(diào)查全體同學(xué)”;乙同學(xué)說(shuō):“放學(xué)時(shí)我到校門(mén)口隨機(jī)調(diào)查部分同學(xué)”;丙同學(xué)說(shuō):“我到六年級(jí)每個(gè)班隨機(jī)調(diào)查一定數(shù)量的同學(xué)”.請(qǐng)指出哪位同學(xué)的調(diào)查方式最合理.

類(lèi)別

頻數(shù)(人數(shù))

頻率

武術(shù)類(lèi)

0.25

書(shū)畫(huà)類(lèi)

20

0.20

棋牌類(lèi)

15

b

器樂(lè)類(lèi)

合計(jì)

a

1.00

(2)他們采用了最為合理的調(diào)查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)以上圖表提供的信息解答下列問(wèn)題:

①a=_____,b=_____;

②在扇形統(tǒng)計(jì)圖中,器樂(lè)類(lèi)所對(duì)應(yīng)扇形的圓心角的度數(shù)是_____;

③若該校六年級(jí)有學(xué)生560人,請(qǐng)你估計(jì)大約有多少學(xué)生參加武術(shù)類(lèi)校本課程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O為正方形ABCD的中心,BE平分∠DBC交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使FC=EC,連結(jié)DF交BE的延長(zhǎng)線(xiàn)于點(diǎn)H,連結(jié)OH交DC于點(diǎn)G,連結(jié)HC.則以下四個(gè)結(jié)論中:①OH∥BF,②GH=BC,③OD=BF,④∠CHF=45°。正確結(jié)論的個(gè)數(shù)為( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】南洞庭大橋是南益高速公路上的重要橋梁,小芳同學(xué)在校外實(shí)踐活動(dòng)中對(duì)此開(kāi)展測(cè)量活動(dòng).如圖,在橋外一點(diǎn)A測(cè)得大橋主架與水面的交匯點(diǎn)C的俯角為α,大橋主架的頂端D的仰角為β,已知測(cè)量點(diǎn)與大橋主架的水平距離ABa,則此時(shí)大橋主架頂端離水面的高CD( )

A.asinα+asinβB.acosα+acosβC.atanα+atanβD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)B在函數(shù)yx圖象上,點(diǎn)Ax軸的正半軸上,等腰直角三角形BCD的頂點(diǎn)CAB上,點(diǎn)D在函數(shù)y第一象限的圖象上若OABBCD面積的差為2,則k的值為( 。

A.8B.4C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究:如圖①,直線(xiàn)l1l2,點(diǎn)A、B在直線(xiàn)l1上,點(diǎn)C、D在直線(xiàn)l2上,記ABC的面積為S1,ABD的面積為S2,求證:S1S2

拓展:如圖②,E為線(xiàn)段AB延長(zhǎng)線(xiàn)上一點(diǎn),BEAB,正方形ABCD、正方形BEFG均在直線(xiàn)AB同側(cè),求證:DEG的面積是正方形BEFG面積的一半.

應(yīng)用:如圖③,在一條直線(xiàn)上依次有點(diǎn)A、B、C、D,正方形ABIJ、正方形BCGH、正方形CDEF均在直線(xiàn)AB同側(cè),且點(diǎn)F、H分別是邊CG、BI的中點(diǎn),若正方形CDEF的面積為l,則AGI的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象交軸于點(diǎn),交軸于點(diǎn)是直線(xiàn)下方拋物線(xiàn)上一動(dòng)點(diǎn).

1)求這個(gè)二次函數(shù)的表達(dá)式;

2)連接,是否存在點(diǎn),使面積最大,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ACB90°,BCkAC,點(diǎn)DAC上,連接BD

1)如圖1,當(dāng)k1時(shí),BD的延長(zhǎng)線(xiàn)垂直于AE,垂足為E,延長(zhǎng)BC、AE交于點(diǎn)F.求證:CDCF;

2)過(guò)點(diǎn)CCGBD,垂足為G,連接AG并延長(zhǎng)交BC于點(diǎn)H

如圖2,若CHCD,探究線(xiàn)段AGGH的數(shù)量關(guān)系(用含k的代數(shù)式表示),并證明;

如圖3,若點(diǎn)DAC的中點(diǎn),直接寫(xiě)出cosCGH的值(用含k的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案