【題目】如圖,以 為原點的直角坐標(biāo)系中, 點的坐標(biāo)為(0, 1),直線 軸于點 為線段上一動點,作直線,交直線于點 點作直線平行于軸,交軸于點 ,交直線于點

1)當(dāng)點在第一象限時,求證:;

2)當(dāng)點在第一象限時,設(shè)長為,四邊形的面積為,請求出間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)當(dāng)點在線段上移動時,點也隨之在直線上移動,是否可能成為等腰三角形?如果可能,求出所有能使成為等腰直角三角形的點的坐標(biāo);如果不可能,請說明理由.

【答案】1)證明見解析;(2S=m2m+10m);(3)使△PBC成為等腰三角形的點P的坐標(biāo)為(01)或(,1.

【解析】

1)由題意可得△OAB為等腰直角三角形,因為MNOB,易得△AMP也是等腰直角三角形,進(jìn)而可得OM=PN,再根據(jù)∠OPC=90°,同角的余角相等可得∠MOP=NPC,則通過“角邊角”即可得證;

2)設(shè)長為,根據(jù)題意可用m表示出AM、MP、OM等的長,再根據(jù)S=SOBNM2SPOM即可得到Sm的函數(shù)關(guān)系式,然后根據(jù)C再第一象限,得出CN的取值范圍,進(jìn)而得到m的取值范圍;

3)分兩種情況進(jìn)行討論:當(dāng)C在第一象限時,要使△PCB為等腰三角形,那么PC=CB,∠PBC=45°,此時PA重合,則可得P點坐標(biāo);當(dāng)C在第四象限時,PB=BC,在等腰直角三角形PBN中,用m表示出BP的長,進(jìn)而得到BC的長,由(1)可得MP=NC,則可列出關(guān)于m的方程,求得m的值,進(jìn)而得到P點坐標(biāo).

1)∵OMBN,MNOB,∠AOB=90°,

∴四邊形OBNM為矩形,

MN=OB=1,∠PMO=CNP=90°,

OA=OB,

∴∠OAB=OBA=45°,

∴∠APM=ABO=45°,

∴∠MAP=MPA=45°,

AM=PM

OM=AOAM,PN=OBPM,即OM=PN,

又∵∠OPC=90°,

∴∠MPO+NPC=90°,

∵∠MPO+MOP=90°,

∴∠MOP=NPC,

ASA);

2)設(shè)長為,四邊形的面積為

AM=PM=APsin45°=m,

OM=1m

S=SOBNM2SPOM=1m)﹣2×1m)·m

=m2m+10m);

3)△PBC可能為等腰三角形.

①當(dāng)PA重合時,PC=BC=1,此時P0,1);

②當(dāng)C在第四象限,且PB=CB時,有BN=PN=1m,

BC=PN=PN=m,

NC=BN+BC=1m+m,

由(1)可得:NC=PM=m

1m+m=m,

解得m=1,

PM=,BN=1

P,1);

由題意可知PC=PB不成立,

則使△PBC成為等腰三角形的點P的坐標(biāo)為(0,1)或(,1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線和拋物線相交于點(點在點的左側(cè)),是拋物線段的一點(點不與重合),過點軸的垂線交拋物線于點,以為邊向右側(cè)作正方形.設(shè)點的橫坐標(biāo)為,當(dāng)正方形的四個頂點分別落在四個不同象限時,的取值范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AC是對角線,點P為矩形外一點且滿足AP=PC,APPCPCAD于點N,連接DP,過點PPMPDADM

1)若AP=5AB=BC,求矩形ABCD的面積;

2)若CD=PM,試判斷線段AC、AP、PN之間的關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°24°的桌面有利于學(xué)生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設(shè)計圖如圖1,AB可繞點A旋轉(zhuǎn),在點C處安裝一根可旋轉(zhuǎn)的支撐臂CD,AC30 cm.

(1)如圖2,當(dāng)∠BAC24°時,CDAB,求支撐臂CD的長;

(2)如圖3,當(dāng)∠BAC12°時,求AD的長.(結(jié)果保留根號)

(參考數(shù)據(jù):sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46sin 12°≈0.20)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=,EAD邊上的一點(E與點A和點D不重合),BE的垂直平分線交AB于點M,交DC于點N.

(1)證明:MN = BE.

(2)設(shè)AE=,四邊形ADNM的面積為S,寫出S關(guān)于的函數(shù)關(guān)系式.

(3)當(dāng)AE為何值時,四邊形ADNM的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的書包里只放了A4大小的試卷共4張,其中語文1張、數(shù)學(xué)2張、英語1

若隨機(jī)地從書包中抽出2張,求抽出的試卷中有英語試卷的概率.

若隨機(jī)地從書包中抽出3張,抽出的試卷中有英語試卷的概率為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一艘輪船在近海處由西向東航行,點C處有一燈塔,燈塔附近30海里的圓形區(qū)域內(nèi)有暗礁,輪船在A處測得燈塔在北偏東60°方向上,輪船又由A向東航行40海里到B處,測得燈塔在北偏東30°方向上.

1)求輪船在B處時到燈塔C處的距離是多少?

2)若輪船繼續(xù)向東航行,有無觸礁危險?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖O的半徑為1cm,弦AB、CD的長度分別為,則弦AC、BD所夾的銳角= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Q是弧AB與弦AB所圍成的圖形的內(nèi)部的一定點,P是弦AB上一動點,連接PQ并延長交弧AB于點C,連接BC.已知AB6cm,設(shè)A,P兩點間的距離為xcm,P,C兩點間的距離為y1cmA,C兩點間的距離為y2cm

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2,隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小明的探究過程,請補(bǔ)充完整:

1)確定自變量x的取值范圍是

2)按下表中自變量x的值進(jìn)行取點、畫圖、測量,分別得到了y1,y2x的幾組對應(yīng)值.

x/cm

0

1

2

3

4

5

6

y1/cm

5.62

4.67

3.76

2.65

3.18

4.37

y2/cm

5.62

5.59

5.53

5.42

5.19

4.73

4.11

3)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(xy2),并面出函數(shù)y1y2的圖象.

4)結(jié)合函數(shù)圖象,解決問題:當(dāng)△APC為等腰三角形時,AP的長度約為 cm

查看答案和解析>>

同步練習(xí)冊答案