【題目】如圖,在等邊△ABC內(nèi)任取一點D,連接CDBD得到△CDB,如果等邊△ABC內(nèi)每一點被取到的可能性都相同,則△CBD是鈍角三角形的概率是______

【答案】

【解析】

由題意通過圓和三角形的知識畫出滿足條件的圖形,分別找出滿足條件的點集對應(yīng)的圖形面積及圖形的總面積,再根據(jù)概率公式即可得出答案.

解:如圖,取BC的中點O,以O為圓心,BC為直徑畫半圓,交ABE,連接OE,

當(dāng)D在半圓上時,∠BDC90°,

∵△CBD是鈍角三角形時,只能∠BDC90°,

∴點D落在如圖所示的半圓O內(nèi)時,△CBD是鈍角三角形,

設(shè)等邊三角形的邊長為2a,

半圓的面積為,

等邊△ABC的面積是a2,

∴滿足∠BDC90°的概率是,

∴△CBD是鈍角三角形的概率;

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實驗室里,水平桌面上有甲、乙、丙三個高都是10cm的圓柱形容器(甲、丙的底面積相同),用兩個相同的管子在容器的6cm高度處連通(即管子底離容器底6,管子的體積忽略不計),、現(xiàn)在三個容器中,只有甲中有水,水位高2,如圖①所示,若每分鐘同時向乙、丙中注入相同量的水,到三個容器都注滿水停止,乙、丙容器中的水位)與注水時間)的圖象如圖②所示.

1)乙、丙兩個容器的底面積之比為

2)圖②中的值為 ,的值為

3)注水多少分鐘后,乙與甲的水位相差2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是平行四邊形,連接對角線,過點的延長線交于點,連接

1)求證:;

2)連結(jié),若,且,求證:四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個全等的直角三角形 ABC 和 DEF 重疊在一起,其中∠A=60°,AC=1.固定△ABC 不動,將△DEF 進行如下操作:

(1)如圖,△DEF 沿線段 AB 向右平移(即 D 點在線段 AB 內(nèi)移動),連接 DC、CF、FB,四邊形 CDBF 的形狀在不斷的變化,但它的面積不變化,請求出其面積.

(2)如圖,當(dāng) D 點移到 AB 的中點時,請你猜想四邊形CDBF 的形狀,并說明理由.

(3)如圖,△DEF 的 D 點固定在 AB 的中點,然后繞 D 點按順時針方向旋轉(zhuǎn)△DEF,使 DF 落在 AB 邊上,此時 F 點恰好與 B 點重合,連接 AE,請你求出 sinα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(白云區(qū)校級二模)如圖,在ABC中,AB10,BC12,以AB為直徑的⊙OBC于點D.過點D的⊙O的切線垂直AC于點F,交AB的延長線于點E.

1)連接OD,則ODAC的位置關(guān)系是   .

2)求AC的長.

3)求sinE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線yax2+bx+c的圖象與x軸交于A(﹣30)、B20)兩點,與y軸交于點C03).

1)求拋物線的解析式;

2)點Em,2)是直線AC上方的拋物線上一點,連接EA、EB、ECEBy軸交于D

①點Fx軸上一動點,連接EF,當(dāng)以A、E、F為頂點的三角形與△BOD相似時,求出線段EF的長;

②點Gy軸左側(cè)拋物線上一點,過點G作直線CE的垂線,垂足為H,若∠GCH=∠EBA,請直接寫出點H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O.如圖,

1)作⊙O的直徑AB

2)以點A為圓心,AO長為半徑畫弧,交⊙OC,D兩點;

3)連接CDAB于點E,連接AC,BC

根據(jù)以上作圖過程及所作圖形,有下面三個推斷:

CEDE; BE3AE; BC2CE

所有正確推斷的序號是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的頂點AB分別在y軸、x軸上,OA2,OB1,斜邊ACx軸.若反比例函數(shù)yk0,x0)的圖象經(jīng)過AC的中點D,則k的值為(

A.4B.5C.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)學(xué)實踐活動課上,小明同學(xué)打算通過測量樹的影長計算樹的高度,陽光下他測得長1m的竹竿落在地面上的影長為0.9m,在同一時刻測量樹的影長時,他發(fā)現(xiàn)樹的影子有一部分落在地面上,還有一部分落在墻面上,他測得這棵樹落在地面上的影長BD2.7m,落在墻面上的影長CD1.0m,則這棵樹的高度是(

A.6.0mB.5.0mC.4.0mD.3.0m

查看答案和解析>>

同步練習(xí)冊答案