【題目】(白云區(qū)校級(jí)二模)如圖,在ABC中,AB10,BC12,以AB為直徑的⊙OBC于點(diǎn)D.過(guò)點(diǎn)D的⊙O的切線垂直AC于點(diǎn)F,交AB的延長(zhǎng)線于點(diǎn)E.

1)連接OD,則ODAC的位置關(guān)系是   .

2)求AC的長(zhǎng).

3)求sinE的值.

【答案】1)平行;(210;(3

【解析】

1)連接OD,由EF為圓O的切線,利用切線的性質(zhì)得到ODEF,再由AFEF,可得ODAC;

2)根據(jù)OAB的中點(diǎn),且ODAF平行,得到OD為三角形ABC的中位線,得到ODAC的一半,由OD的長(zhǎng)求出AC的長(zhǎng)即可;

3)由(2)得到DBC中點(diǎn),求出BDDC長(zhǎng),過(guò)B點(diǎn)作EF的垂線BH,垂足為H點(diǎn),連接AD,可得BH,OD,AC三直線平行,由AB為圓O的直徑,利用直徑所對(duì)的圓周角為直角,得到∠ADB90°,再利用弦切角等于夾弧所對(duì)的圓周角,得到三角形DBH與三角形ABD相似,由相似得比例求出BH的長(zhǎng),再由BHOD平行得到三角形BHE與三角形ODE相似,由相似得比例求出BE的長(zhǎng),在直角三角形BHE中,利用銳角三角函數(shù)定義求出sinE的值即可.

1)連接OD,則ODAC的位置關(guān)系是平行,

理由:∵EF與圓O相切,

ODEF,

AFEF

ODAC;

故答案為:平行;

2)∵OAB中點(diǎn),ODAC,且ODAOOB5,

ODBAC的中位線,

ODAC

AC2OD10;

3)由(2)知DBC的中點(diǎn),

BDCD6,

過(guò)B點(diǎn)作EF的垂線BH,垂足為H點(diǎn),連接AD,

則有BHODAC,

AB是直徑,

∴∠ADB90°,

∵∠HDB=∠DAB,∠ADB=∠DHB90°,

∴△DBH∽△ABD

,即,

解得:BH

設(shè)BEx,

BHOD,

∴△EHB∽△EDO,

,即

解得:x,即BE,

sinE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:都是的直徑,都是的弦,于點(diǎn),

1)如圖1,求證:;

2)如圖2,延長(zhǎng)交于點(diǎn),求證:;

3)如圖3,在(2)的條件下,延長(zhǎng)交于點(diǎn),若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù) y的圖象如圖所示,則二次函數(shù) y =ax 22x和一次函數(shù) ybx+a 在同一平面直角坐標(biāo)系中的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,以AB為直徑作半圓,點(diǎn)PCD中點(diǎn),BP與半圓交于點(diǎn)Q,連結(jié)DQ,給出如下結(jié)論:①;②;③;④,其中正確結(jié)論是______填寫序號(hào)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(3,y1),B(2y2)均在拋物線yax2+bx+c上,點(diǎn)P(m,n)是該拋物線的頂點(diǎn),若y1y2n,則m的取值范圍是(  )

A.3m2B.m-C.m>﹣D.m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC內(nèi)任取一點(diǎn)D,連接CDBD得到△CDB,如果等邊△ABC內(nèi)每一點(diǎn)被取到的可能性都相同,則△CBD是鈍角三角形的概率是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】成都市天府一南站城市立交橋是成都市政府確定的城建標(biāo)志性建筑,如圖是立交橋引申出的部分平面圖,測(cè)得拉索AB與水平橋面的夾角是37°,拉索DE與水平橋面的夾角是67°,兩拉索頂端的距離AD2m,兩拉索底端距離BE10m,請(qǐng)求出立柱AC的長(zhǎng).(參考數(shù)據(jù)tan37°≈,sin37°≈,cos37°≈,tan67°≈sin67°≈,cos67°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小麗同學(xué)學(xué)習(xí)了統(tǒng)計(jì)知識(shí)后,帶領(lǐng)班級(jí)“課外活動(dòng)小組”,隨機(jī)調(diào)查了某轄區(qū)若干名居民的年齡,并將調(diào)查數(shù)據(jù)繪制成圖①和圖②兩幅尚不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)圖中的信息,解答下列各題:

1)共抽查了_____名居民的年齡,扇形統(tǒng)計(jì)圖中_____,______

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該轄區(qū)居民約有2600人,請(qǐng)你估計(jì)年齡在1559歲的居民人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A3,1),點(diǎn)B04).

1)求該二次函數(shù)的表達(dá)式及頂點(diǎn)坐標(biāo);

2)點(diǎn)Cm,n)在該二次函數(shù)圖象上.

當(dāng)m=﹣1時(shí),求n的值;

當(dāng)mx3時(shí),n最大值為5,最小值為1,請(qǐng)根據(jù)圖象直接寫出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案