【題目】已知函數(shù)f(x)=|x|+|x﹣3|.
(1)解關于x的不等式f(x)﹣5≥x;
(2)設m,n∈{y|y=f(x)},試比較mn+4與2(m+n)的大。

【答案】
(1)解:

,解之得 或x∈或x≥8,

所以不等式的解集為


(2)解:由(1)易知f(x)≥3,所以m≥3,n≥3

由于2(m+n)﹣(mn+4)=2m﹣mn+2n﹣4=(m﹣2)(2﹣n)

且m≥3,n≥3,所以m﹣2>0,2﹣n<0,即(m﹣2)(2﹣n)<0,

所以2(m+n)<mn+4


【解析】(1)分類討論,即可解關于x的不等式f(x)﹣5≥x;(2)由(1)易知f(x)≥3,所以m≥3,n≥3,利用作差法,即可比較mn+4與2(m+n)的大。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在“一帶一路”倡議下,我國已成為設施聯(lián)通,貿(mào)易暢通的促進者,同時也帶動了我國與沿線國家的貨物交換的增速發(fā)展,如圖是湘成物流園2016年通過“海、陸(汽車)、空、鐵”四種模式運輸貨物的統(tǒng)計圖. 請根據(jù)統(tǒng)計圖解決下面的問題:

(1)該物流園2016年貨運總量是多少萬噸?
(2)該物流園2016年空運貨物的總量是多少萬噸?并補全條形統(tǒng)計圖;
(3)求條形統(tǒng)計圖中陸運貨物量對應的扇形圓心角的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點,則在△ADE翻轉(zhuǎn)過程中,下列說法錯誤的是(
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長之比為定值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點P是曲線C1:(x﹣2)2+y2=4上的動點,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,以極點O為中心,將點P逆時針旋轉(zhuǎn)90°得到點Q,設點Q的軌跡方程為曲線C2
(1)求曲線C1 , C2的極坐標方程;
(2)射線θ= 與曲線C1 , C2分別交于A,B兩點,定點M(2,0),求△MAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC= BC=1,E是PC的中點,面PAC⊥面ABCD.
(Ⅰ)證明:ED∥面PAB;
(Ⅱ)若PC=2,PA= ,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ﹣ax,e為自然對數(shù)的底數(shù) (Ⅰ)若函數(shù)f(x)的圖象在點(e2 , f(e2))處的切線方程為 3x+4y﹣e2=0,求實數(shù)a,b的值;
(Ⅱ)當b=1時,若存在 x1 , x2∈[e,e2],使 f(x1)≤f′(x2)+a成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】醫(yī)學上某種還沒有完全攻克的疾病,治療時需要通過藥物控制其中的兩項指標H和V.現(xiàn)有..三種不同配方的藥劑,根據(jù)分析,A,B,C三種藥劑能控制H指標的概率分別為0.5,0.6,0.75,能控制V指標的概率分別是0.6,0.5,0.4,能否控制H指標與能否控制V指標之間相互沒有影響. (Ⅰ)求A,B,C三種藥劑中恰有一種能控制H指標的概率;
(Ⅱ)某種藥劑能使兩項指標H和V都得到控制就說該藥劑有治療效果.求三種藥劑中有治療效果的藥劑種數(shù)X的分布列.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知圓C:(x﹣1)2+y2= ,一動圓與直線x=﹣ 相切且與圓C外切. (Ⅰ)求動圓圓心P的軌跡T的方程;
(Ⅱ)若經(jīng)過定點Q(6,0)的直線l與曲線T相交于A、B兩點,M是線段AB的中點,過M作x軸的平行線與曲線T相交于點N,試問是否存在直線l,使得NA⊥NB,若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sin(2x+φ)+cos(2x+φ)為偶函數(shù),且在[0, ]上是增函數(shù),則φ的一個可能值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案