【題目】已知函數(shù)f(x)= sin(2x+φ)+cos(2x+φ)為偶函數(shù),且在[0, ]上是增函數(shù),則φ的一個(gè)可能值為( )
A.
B.
C.
D.
【答案】C
【解析】解:根據(jù)題意,f(x)= sin(2x+φ)+cos(2x+φ)=2[ sin(2x+φ)+ cos(2x+φ)] =2sin(2x+φ+ ),
若f(x)為偶函數(shù),則有φ+ =kπ+ ,即φ=kπ+ ,
分析選項(xiàng),可以排除B、D,
對于A、當(dāng)φ= 時(shí),f(x)=2sin(2x+ )=2cos2x,在[0, ]上是減函數(shù),不符合題意,
對于C、當(dāng)φ= 時(shí),f(x)=2sin(2x+ )=﹣2cos2x,在[0, ]上是增函數(shù),符合題意,
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解奇偶性與單調(diào)性的綜合的相關(guān)知識(shí),掌握奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相反的單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x|+|x﹣3|.
(1)解關(guān)于x的不等式f(x)﹣5≥x;
(2)設(shè)m,n∈{y|y=f(x)},試比較mn+4與2(m+n)的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=|x+a|,g(x)=|x+3|﹣x,記關(guān)于x的不等式f(x)<g(x)的解集為M.
(1)若a﹣3∈M,求實(shí)數(shù)a的取值范圍;
(2)若[﹣1,1]M,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形△ABC的三邊長構(gòu)成公差為2的等差數(shù)列,且最大角的正弦值為 ,則這個(gè)三角形的周長為( )
A.15
B.18
C.21
D.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+x2﹣2ax+1(a為常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對任意的 ,都存在x0∈(0,1]使得不等式 成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以A、B、C、D、E為頂點(diǎn)的五面體中,AD⊥平面ABC,AD∥BE,AC⊥CB,AB=2BE=4AD=4.
(1)O為AB的中點(diǎn),F(xiàn)是線段BE上的一點(diǎn),BE=4BF,證明:OF∥平面CDE;
(2)當(dāng)直線DE與平面CBE所成角的正切值為 時(shí),求平面CDE與平面ABC所成銳二面角的余弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的分式方程 ﹣3= 有負(fù)分?jǐn)?shù)解,且關(guān)于x的不等式組 的解集為x<﹣2,那么符合條件的所有整數(shù)a的積是( 。
A.﹣3
B.0
C.3
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富學(xué)生課外小組活動(dòng),培養(yǎng)學(xué)生動(dòng)手操作能力,王老師讓學(xué)生把5m長的彩繩截成2m或1m的彩繩,用來做手工編織,在不造成浪費(fèi)的前提下,你有幾種不同的截法( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當(dāng)陽光與水平線成45°角時(shí),測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號(hào)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com