已知在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2x經(jīng)過點A(4,0),頂點為B.
(1)求頂點B的坐標(biāo);
(2)將這條拋物線向左平移后與y軸相交于點C,此時點A移動到點D的位置,且∠DBA=∠CBO,求平移后拋物線的表達(dá)式.
(1)∵拋物線y=ax2+2x經(jīng)過點A(4,0),
∴0=16a+8.
∴a=-
1
2
,
∴拋物線的表達(dá)式為y=-
1
2
x2+2x,
∴y=-
1
2
x2+2x=-
1
2
(x2-4x+22-4)=-
1
2
(x-2)2+2.
頂點B的坐標(biāo)為(2,2);

(2)解法一:設(shè)平移后拋物線的表達(dá)式為y=-
1
2
x2+bx+c.
∵點B的坐標(biāo)為(2,2),
∴AB=OB=2
2
,∠BAD=∠BOC=45°.
又∵∠DBA=∠CBO,
∴△ABD≌△OBC.
∴AD=OC,即平移的距離為c.
∴點D的坐標(biāo)為(4-c,0).
∴0=-
1
2
(4-c)2+b(4-c)+c.
又∵平移后拋物線的對稱軸為x=b.
∴b=2-c.
∴0=-
1
2
(4-c)2+(2-c)(4-c)+c..
解得c=2或c=0(不符合題意,舍去).
∴平移后拋物線的表達(dá)式為y=-
1
2
x2+2.
解法二:∵原拋物線表達(dá)式為y=-
1
2
x(x-4),
∴設(shè)平移后拋物線表達(dá)式為y=-
1
2
(x+m)(x-4+m)(m>0,向左平移的距離).
即y=-
1
2
x2-(m-2)x-
1
2
m2+2m.
∵B的坐標(biāo)為(2,2),
∵AB=OB=2
2
,∠BAD=∠BOC=45°,
又∵∠DBA=∠CBO,
∴△ABD≌△OBC.
∴AD=OC,即m=-
1
2
m2+2m.解得m=2或m=0(不符合題意,舍去).
∴平移后拋物線的表達(dá)式為:y=-
1
2
x2+2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(人教版)已知:二次函數(shù)y=x2-(m+1)x+m的圖象交x軸于A(x1,0)、B(x2,0)兩點,交y軸正半軸于點C,且x12+x22=10.
(1)求此二次函數(shù)的解析式;
(2)是否存在過點D(0,-
5
2
)的直線與拋物線交于點M、N,與x軸交于點E,使得點M、N關(guān)于點E對稱?若存在,求直線MN的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點,與y軸交于C點,拋物線y=ax2+bx+c經(jīng)過A,B,C三點,頂點為F.
(1)求A,B,C三點的坐標(biāo);
(2)求拋物線的解析式及頂點F的坐標(biāo);
(3)已知M為拋物線上一動點(不與C點重合),試探究:
①使得以A,B,M為頂點的三角形面積與△ABC的面積相等,求所有符合條件的點M的坐標(biāo);
②若探究①中的M點位于第四象限,連接M點與拋物線頂點F,試判斷直線MF與⊙E的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-1,與x軸交于A,B兩點,與y軸交于點C,其中A(-3,0),C(0,-2)
(1)求這條拋物線的函數(shù)表達(dá)式;
(2)已知在對稱軸上存在一點P,使得△PBC的周長最。埱蟪鳇cP的坐標(biāo);
(3)若點D是線段OC上的一個動點(不與點O、點C重合).過點D作DEPC交x軸于點E.連接PD、PE.設(shè)CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,以點A(3,0)為圓心,以5為半徑的圓與x軸相交于點B、C,與y軸相交于點D、E.
(1)若拋物線y=
1
4
x2+bx+c
經(jīng)過C、D兩點,求此拋物線的解析式并判斷點B是否在此拋物線上.
(2)若在(1)中的拋物線的對稱軸有一點P,使得△PBD的周長最短,求點P的坐標(biāo).
(3)若點M為(1)中拋物線上一點,點N為其對稱軸上一點,是否存在以點B、C、M、N為頂點的平行四邊形?若存在,直接寫出點M、N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=
8
2
5
x2+bx+c經(jīng)過點A(
3
2
,0)和點B(1,2
2
),與x軸的另一個交點為C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點D在對稱軸的右側(cè),x軸上方的拋物線上,且∠BDA=∠DAC,求點D的坐標(biāo);
(3)在(2)的條件下,連接BD,交拋物線對稱軸于點E,連接AE.
①判斷四邊形OAEB的形狀,并說明理由;
②點F是OB的中點,點M是直線BD的一個動點,且點M與點B不重合,當(dāng)∠BMF=
1
3
∠MFO時,請直接寫出線段BM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用12m長的柵欄圍成一個中間被隔斷的鴨舍(柵欄占地面積忽略不計).

(1)如圖1,當(dāng)AB=______m,BC=______m時,所圍成兩間鴨舍的面積最大,最大值為______m2;
(2)如圖2,若現(xiàn)有一面長4m的墻可以利用,其余三方及隔斷使用柵欄,所圍成兩間鴨舍面積和的最大值是多少______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店購買一批單價為20元的日用品,如果以單價30元銷售,那么半月內(nèi)可以售出400件.據(jù)銷售經(jīng)驗,提高銷售單價會導(dǎo)致銷售量的減少,即銷售單價每提高一元,銷售量相應(yīng)減少20件.如何提高銷售價,才能在半月內(nèi)獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出方程ax2+bx+c=0的兩個根;
(2)當(dāng)x為何值時,y>0;y<0?
(3)寫出y隨x的增大而減小的自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案