【題目】如圖,矩形AEFG的頂點(diǎn)E,G分別在正方形ABCDAB,AD邊上,連接B,交EF于點(diǎn)M,交FG于點(diǎn)N,設(shè)AE=aAG=b,AB=cbac).

1)求證:

2)求AMN的面積(用a,b,c的代數(shù)式表示);

3)當(dāng)∠MAN=45°時,求證:c2=2ab

【答案】1)證明見解析;(2ca+bc);(3)證明見解析.

【解析】試題分析:1)首先過點(diǎn)NNHAB于點(diǎn)H,過點(diǎn)MMIAD于點(diǎn)I,可得NHBDIM是等腰直角三角形,四邊形AGNH和四邊形AEMI是矩形,則可求得BN=b,DM=a,繼而求得答案;

2)由SAMN=SABD-SABM-SADN,可得SAMN=c2-cc-a-cc-b),繼而求得答案;

3易證得∴∠DMA=BAN,又由∠ABD=ADB=45°,可證得ADM∽△NBA,然后由相似三角形的對應(yīng)邊成比例,求得答案.

試題解析:1)證明:過點(diǎn)NNHAB于點(diǎn)H,過點(diǎn)MMIAD于點(diǎn)I,

∵四邊形ABCD是正方形,

∴∠ADB=ABD=45°

∴△NHBDIM是等腰直角三角形,四邊形AGNH和四邊形AEMI是矩形,

BN=NH=AG=bDM=MI=AE=a,

;

2SAMN=SABD﹣SABM﹣SADN

=ABADABMEADNG

=c2ccaccb

=ccc+ac+b

=ca+bc);

3∵∠DMA=ABD+MAB=MAB+45°BAN=MAB+MAN=MAB+45°,

∴∠DMA=BAN,

∵∠ABD=ADB=45°

∴△ADM∽△NBA,

,

DM=a,BN=b,

c2=2ab

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,C的半徑為r,P是與圓心C不重合的點(diǎn),點(diǎn)P關(guān)于C的反稱點(diǎn)的定義如下:若在射線CP上存在一點(diǎn)P′,滿足CP+CP′=2r,則稱P′為點(diǎn)P關(guān)于C的反稱點(diǎn),如圖為點(diǎn)P及其關(guān)于C的反稱點(diǎn)P′的示意圖.

特別地,當(dāng)點(diǎn)P′與圓心C重合時,規(guī)定CP′=0.

(1)當(dāng)O的半徑為1時.

分別判斷點(diǎn)M(2,1),N(,0),T1 )關(guān)于O的反稱點(diǎn)是否存在?若存在,求其坐標(biāo);

點(diǎn)P在直線y=﹣x+2上,若點(diǎn)P關(guān)于O的反稱點(diǎn)P′存在,且點(diǎn)P′不在x軸上,求點(diǎn)P的橫坐標(biāo)的取值范圍;

2C的圓心在x軸上,半徑為1,直線y=﹣x+2與x軸、y軸分別交于點(diǎn)A,B,若線段AB上存在點(diǎn)P,使得點(diǎn)P關(guān)于C的反稱點(diǎn)P′在C的內(nèi)部,求圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,GBC中點(diǎn),點(diǎn)EAD邊上,且∠1=2

(1)求證:EAD中點(diǎn);

(2)FCD延長線上一點(diǎn),連接BF,且滿足∠3=2,求證:CD=BF+DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AB的高為16m,遠(yuǎn)處有一塔CD,小李在樓底A處測得塔頂D處的仰角為 60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點(diǎn)分別位于B、D兩點(diǎn)正下方,且A、C兩點(diǎn)在同一水平線上,求塔CD的高.(=1.73,結(jié)果保留一位小數(shù).)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BDABC的角平分線,點(diǎn)E.F分別在邊AB.BC上,且EDBCEFAC,求證:

1BE等于CF

2)∠ABC=60゜,∠ADB=100゜,求∠AEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AE=AB,直線DEBC于點(diǎn)F,則∠BEF=( 。

A. 50°B. 30°C. 60°D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級學(xué)生全部參加初二生物地理會考,從中抽取了部分學(xué)生的生物考試成績,將他們的成績進(jìn)行統(tǒng)計后分為ABC,D四等,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題

1)抽取了______名學(xué)生成績;(2)請把條形統(tǒng)計圖補(bǔ)充完整;

3)扇形統(tǒng)計圖中等級D所在的扇形的圓心角度數(shù)是______

4)若A,B,C代表合格,該校初二年級有300名學(xué)生,求全年級生物合格的學(xué)生共約多少人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABC中,DBC的中點(diǎn),DEBC,垂足為D,交AB于點(diǎn)E,且BE2EA2AC2,

(1)求證:∠A90°.

(2)DE3BD4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校園文學(xué)社為了解本校學(xué)生對本社一種報紙四個版面的喜歡情況,隨機(jī)抽取部分學(xué)生做了一次問卷調(diào)查,要求學(xué)生選出自己喜歡的一個版面,將調(diào)查數(shù)據(jù)進(jìn)行了整理、繪制成部分統(tǒng)計圖如下:

各版面選擇人數(shù)的扇形統(tǒng)計圖

各版面選擇人數(shù)的條形統(tǒng)計圖

請根據(jù)圖中信息,解答下列問題:

1a=______%,第四版對應(yīng)扇形的圓心角為 °;

2)請你補(bǔ)全條形統(tǒng)計圖;

3)若該校有1200名學(xué)生,請你估計全校學(xué)生中最喜歡第三版的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案