【題目】如圖,PA、PB切⊙O于A、B兩點,CD切⊙O于點E,分別交PA、PB于點C、D.若PA、PB的長是關于x的一元二次方程x2﹣mx+m﹣1=0的兩個根,求△PCD的周長.
【答案】解:∵PA、PB的長是關于x的一元二次方程x2﹣mx+m﹣1=0的兩個根,
∴PA+PB=m,PAPB=m﹣1,
∵PA、PB切⊙O于A、B兩點,
∴PA=PB=,
即=m﹣1,
即m2﹣4m+4=0,
解得:m=2,
∴PA=PB=1,
∵PA、PB切⊙O于A、B兩點,CD切⊙O于點E,
∴AD=ED,BC=EC,
∴△PCD的周長為:PD+CD+PC=PD+DE+EC+PC=PD+AD+BC+PC=PA+PB=2.
【解析】由PA、PB切⊙O于A、B兩點,CD切⊙O于點E,根據(jù)切線長定理,可得PA=PB,又由PA、PB的長是關于x的一元二次方程x2﹣mx+m﹣1=0的兩個根,根據(jù)根與系數(shù)的關系,可求得PA與PB的長,又由CD切⊙O于點E,即可得△PCD的周長等于PA+PB.
【考點精析】解答此題的關鍵在于理解切線的性質(zhì)定理的相關知識,掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.
科目:初中數(shù)學 來源: 題型:
【題目】在三角形ABC中,BC=14,AC=9,AB=13,它的內(nèi)切圓分別和BC、AC、AB切于點D、E、F,那么AF、BD、CE的長分別為( )
A.AF=4,BD=9,CE=5
B.AF=4,BD=5,CE=9
C.AF=5,BD=4,CE=9
D.AF=9,BD=4,CE=5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上,點A表示-5,點B表示10.動點P從點A出發(fā),沿數(shù)軸正方向以每秒1個單位的速度勻速運動;同時,動點Q從點B出發(fā),沿數(shù)軸負方向以每秒2個單位的速度勻速運動.設運動時間為t秒.
(1)當t為 秒時,P,Q兩點相遇,求出相遇點所對應的數(shù);
(2)當t為何值時,P,Q兩點的距離為3個單位長度,并求出此時點P對應的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)(-10xy3)·2xy4z;
(2)(-4x)(2x2-2x-1);
(3)0.4x2y·-(-2x)3·xy3;
(4)-3a+2b(a2-ab)-2a2(b+3).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關系式.
(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+1與x軸、y軸分別交于點A、B,以線段AB為直角邊在第﹣象限內(nèi)作等腰直角△ABC,∠BAC=90°,
(1)求點A、B、C的坐標;
(2)如果在第二象限內(nèi)有﹣點P(a,),且△ABP的面積與△ABC的面積相等,求a的值;
(3)請直接寫出點Q的坐標,使得以Q、A、C為頂點的三角形和△ABC全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A,B兩點在數(shù)軸上的位置如圖所示,O為原點,現(xiàn)A,B兩點分別以1個單位長度/秒的速度同時向左運動。
(1)幾秒后,原點恰好在A,B兩點正中間?
(2)幾秒后,恰好有OA:OB=1:2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O與直線l相切于A點,點P、Q同時從A點出發(fā),P沿著直線l向右、Q沿著圓周按逆時針以相同的速度運動,當Q運動到點A時,點P也停止運動.連接OQ、OP(如圖),則陰影部分面積S1、S2的大小關系是( )
A.S1=S2
B.S1≤S2
C.S1≥S2
D.先S1<S2 , 再S1=S2 , 最后S1>S2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此類推,則a2015的值為( 。
A. ﹣2015 B. ﹣2014 C. ﹣1007 D. ﹣1008
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com