【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別相交于點(diǎn)A,B,四邊形ABCD是正方形,拋物線在經(jīng)過A,D兩點(diǎn).
(1)求該拋物線表達(dá)式;
(2)連接BD,將線段BD繞著D點(diǎn)順時(shí)針旋轉(zhuǎn)90度,得到DB’.直接寫出點(diǎn)B’的坐標(biāo),并判斷點(diǎn)B’是否落在拋物線上,請說明理由.
【答案】(1) (2)點(diǎn)B’的坐標(biāo)為 (4,4), 點(diǎn)B’在拋物線上
【解析】(1)由已知條件過D作DE⊥x軸于E,先證△OAB≌△EDA得到DE=OA=1,AE=OB=2,得出D點(diǎn)的坐標(biāo),利用待定系數(shù)法即可確定函數(shù)的解析式;(2)利用線段BD繞著D點(diǎn)順時(shí)針旋轉(zhuǎn)90度,得出點(diǎn)B’的坐標(biāo),再把x=4代入(1)的函數(shù)解析式可證點(diǎn)B’在拋物線上.
解:(1)由題可得: A(1,0),B(0,2),, OA=1, OB=2,
過D作DE⊥X軸于E,證△OAB≌△EDA,
得出DE=OA=1,AE=OB=2,
∴ D(3,1),
把A(1,0) , D(3,1)代入,得: ,
解得: ,
∴ 拋物線表達(dá)式為: .
(2)點(diǎn)B’的坐標(biāo)為 (4,4) ,
把=4代入,得 ,
∴ 點(diǎn)B’在拋物線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC.
(1)如果∠AOB=900,∠BOC=400,求∠DOE的度數(shù);
(2)如果∠AOB=α,∠BOC=β (α、β均為銳角,α>β),其他條件不變,求∠DOE;
(3)從(1)、(2)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:99×99+199=992+198+1=992+2×99×1+12=(99+1)2=104.
計(jì)算:(1)999×999+1999;
(2)999999×999999+1999999.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
(1)寫出該拋物線的頂點(diǎn)D坐標(biāo)和對稱軸.
(2)拋物線與軸交于A,B兩點(diǎn),求△ABD的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若n為正整數(shù),則計(jì)算(-a2)n+(-an)2的結(jié)果是( 。
A.0B.2anC.-2anD.0或2a2n
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師家距學(xué)校1900米,某天他步行去上班,走到路程的一半時(shí)發(fā)現(xiàn)忘帶手機(jī),此時(shí)離上班時(shí)間還有23分鐘,于是他立刻步行回家取手機(jī),隨后騎電瓶車返回學(xué)校.已知李老師騎電瓶車到學(xué)校比他步行到學(xué)校少用20分鐘,且騎電瓶車的平均速度是步行速度的5倍,李老師到家開門、取手機(jī)、啟動(dòng)電瓶車等共用4分鐘.
(1)求李老師步行的平均速度;
(2)請你判斷李老師能否按時(shí)上班,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com