【題目】直線AB,CD交于點(diǎn)O,將一個(gè)三角板的直角頂點(diǎn)放置于點(diǎn)O處,使其兩條直角邊OE,OF,分別位于OC的兩側(cè).若OC平分∠BOF,OE平分∠COB

1)求∠BOE的度數(shù);

2)寫出圖中∠BOE的補(bǔ)角,并說(shuō)明理由.

【答案】130°;(2)∠BOE的補(bǔ)角有∠AOE和∠DOE

【解析】

1)根據(jù)OC平分∠BOF,OE平分∠COB.可得∠BOE=∠EOCBOC,∠BOC=∠COF,進(jìn)而得出,∠EOF3BOE90°,求出∠BOE;

2)根據(jù)平角和互補(bǔ)的意義,通過(guò)圖形中可得∠BOE+AOE180°,再根據(jù)等量代換得出∠BOE+DOE180°,進(jìn)而得出∠BOE的補(bǔ)角.

解:(1)∵OC平分∠BOF,OE平分∠COB

∴∠BOE=∠EOCBOC,∠BOC=∠COF,

∴∠COF2BOE,

∴∠EOF3BOE90°,

∴∠BOE30°,

2)∵∠BOE+AOE180°

∴∠BOE的補(bǔ)角為∠AOE;

∵∠EOC+DOE180°,∠BOE=∠EOC,

∴∠BOE+DOE180°,∴∠BOE的補(bǔ)角為∠DOE;

答:∠BOE的補(bǔ)角有∠AOE和∠DOE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一些相同的“○”按如圖所示的規(guī)律依次擺放,觀察每個(gè)龜圖中的“○”的個(gè)數(shù),若第n個(gè)龜圖中有245個(gè)“○”,則n=( )

A. 14 B. 15 C. 16 D. 17

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小林同學(xué)積極參加體育鍛煉,天天堅(jiān)持跑步,他每天以1000m為標(biāo)準(zhǔn),超過(guò)的記作正數(shù),不足的記作負(fù)數(shù).下表是一周內(nèi)小明跑步情況的記錄(單位:m)

星期

跑步情況(m)

+420

+460

-100

-210

-330

+200

-240

(1)星期三小林跑了_____

(2)小林在跑得最少的一天跑了______?跑得最多的一天比最少的一天多跑了_____?

(3)若小林跑步的平均速度為240/分,求本周內(nèi)小明用于跑步的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是格點(diǎn)三角形(各頂點(diǎn)是網(wǎng)格線的交點(diǎn)), 每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形.

1)將ABC向右平移6個(gè)單位長(zhǎng)度,畫出平移后的A1B1C1

2)將平移后的A1B1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的A2B1C2

3)將ABC沿直線BC翻折,畫出翻折后的A3BC.

4)試問(wèn)ABC能否經(jīng)過(guò)一次旋轉(zhuǎn)后與A2B1C2重合,若能,請(qǐng)?jiān)趫D中用字母O表示旋轉(zhuǎn)中心并寫出旋轉(zhuǎn)角的大;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究:在數(shù)軸上描出下列各組數(shù):13 2-5, -4-1

1 觀察描在數(shù)軸上的每組數(shù),說(shuō)明表示每組數(shù)的兩點(diǎn)之間的距離與這組數(shù)有何關(guān)系?

2)若果a,b表示兩個(gè)有理數(shù),判斷____ (填>,=或<)

3)當(dāng)x為何值時(shí):的值相等。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有理數(shù) a、b、c 在數(shù)軸上對(duì)應(yīng)的點(diǎn)的位置,如圖所示:① abc0;② |ab||bc||ac|;③ (ab)(bc)(ca)0;④ |a|1bc,以上四個(gè)結(jié)論正確的有( )個(gè)

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=x2﹣2x+a(a<0)與y軸相交于點(diǎn)A,頂點(diǎn)為M.直線y=x﹣a分別與x軸,y軸相交于B,C兩點(diǎn),并且與直線AM相交于點(diǎn)N.

(1)試用含a的代數(shù)式分別表示點(diǎn)M與N的坐標(biāo);

(2)如圖,將NAC沿y軸翻折,若點(diǎn)N的對(duì)應(yīng)點(diǎn)N′恰好落在拋物線上,AN′與x軸交于點(diǎn)D,連接CD,求a的值和四邊形ADCN的面積;

(3)在拋物線y=x2﹣2x+a(a<0)上是否存在一點(diǎn)P,使得以P,A,C,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出P點(diǎn)的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx2m+nx+nm0)的圖象與y軸正半軸交于A點(diǎn).

1)求證:該二次函數(shù)的圖象與x軸必有兩個(gè)交點(diǎn);

2)設(shè)該二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)中右側(cè)的交點(diǎn)為點(diǎn)B,若∠ABO=45°,將直線AB向下平移2個(gè)單位得到直線l,求直線l的解析式;

3)在(2)的條件下,設(shè)Mpq)為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),當(dāng)﹣3p0時(shí),點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)都在直線l的下方,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為 ,點(diǎn)E、F分別為邊AD、CD上一點(diǎn),將正方形分別沿BE、BF折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)M恰好落在BF上,點(diǎn)C的對(duì)應(yīng)點(diǎn)N恰好落在BE上,則圖中陰影部分的面積為_________

查看答案和解析>>

同步練習(xí)冊(cè)答案