【題目】如圖所示,平面直角坐標(biāo)的原點(diǎn)是等邊三角形的中心,A(0,1),把ABC繞點(diǎn) O 順時(shí)針旋轉(zhuǎn)每秒旋轉(zhuǎn) 60°,則第 2018 秒時(shí),點(diǎn) A 的坐標(biāo)為

A. (0,1) B. (﹣,﹣ C. ,﹣ D.

【答案】C

【解析】

ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一周需6秒,而2018=6×336+2,所以第2018秒時(shí),點(diǎn)A旋轉(zhuǎn)到點(diǎn)A′,AOA′=120°,OA=OA′=1,作A′Hx軸于H,然后通過解直角三角形求出A′HOH即可得到A′點(diǎn)的坐標(biāo).

360°÷60°=6,2018=6×336+2,

∴第2018秒時(shí),點(diǎn)A旋轉(zhuǎn)到點(diǎn)A′,如圖,

AOA′=120°,OA=OA′=1,

A′Hx軸于H,

∵∠A′OH=30°,

A′H=OA′=,OH=A′H=,

A′(,-).

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,△ABC中,∠A=68°,以AB為直徑的⊙O與AC,BC的交點(diǎn)分別為D,E

(Ⅰ)如圖①,求∠CED的大小;

(Ⅱ)如圖②,當(dāng)DE=BE時(shí),求∠C的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC.

(1)如圖1,若OAB的中點(diǎn),以O為圓心,OB為半徑作⊙OBC于點(diǎn)D,過DDEAC,垂足為E.

①試說明:BD=CD;

②判斷直線DE與⊙O的位置關(guān)系,并說明理由.

(2)如圖2,若點(diǎn)O沿OB向點(diǎn)B移動(dòng),以O為圓心,以OB為半徑作⊙OAC相切于點(diǎn)F,與AB相交于點(diǎn)G,與BC相交于點(diǎn)D,DEAC,垂足為E,已知⊙O的半徑長(zhǎng)為4,CE=2,求切線AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,BE平分∠ABC,CD平分∠ACB,則下圖中共有幾對(duì)全等三角形( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,l1 l2 交于點(diǎn) P,l2 l3 交于點(diǎn) Q,∠l=104°,∠2=87°,要使得 l1∥l2,下列操作正確的是(

A. l1 繞點(diǎn) P 逆時(shí)針旋轉(zhuǎn) 14°

B. l1 繞點(diǎn) P 逆時(shí)針旋轉(zhuǎn) 17°

C. l2 繞點(diǎn) Q 顒時(shí)針旋轉(zhuǎn) 11°

D. l2 繞點(diǎn) Q 順時(shí)針旋轉(zhuǎn) 14°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC 中,AD BC 邊上的中線.

(1)畫出與ACD 關(guān)于點(diǎn) D 成中心對(duì)稱的三角形;

(2)找出與 AC 相等的線段;

(3)探索:ABC 中,AB+AC 與中線 AD 之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果兩條線段將一個(gè)三角形分成 3個(gè)等腰三角形,我們把這兩條線段叫做這個(gè)三角形的“三分線”.例如:如圖①,線段把一個(gè)頂角為的等腰分成了 3個(gè)等腰三角形,則線段就是等腰的“三分線”.

1)圖②是一個(gè)頂角為 45°的等腰三角形,在圖中畫出“三分線”,并標(biāo)出每個(gè)等腰三角形頂角的度數(shù).

2)如圖③,在邊上取一點(diǎn),令可以分割出第一個(gè)等腰,接著又需要考慮如何將分成2個(gè)等腰三角形,即可畫出所需要的三分線,類比該方法,在圖④中畫出的“三分線”,并標(biāo)出每個(gè)等腰三角形頂角的度數(shù);

3)在中,,

①畫出;(尺規(guī)畫圖,不寫作法,保留作圖痕跡)

②畫出的“三分線”,并做適當(dāng)?shù)臉?biāo)注.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)(網(wǎng)格線的交點(diǎn))上.

(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系,使點(diǎn)A坐標(biāo)為(1,3)點(diǎn)B坐標(biāo)為(2,1);

(2)請(qǐng)作出△ABC關(guān)于y軸對(duì)稱的△A'B'C',并寫出點(diǎn)C'的坐標(biāo);

(3)判斷△ABC的形狀.并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是反比例函數(shù)y=圖象上的任意一點(diǎn),過點(diǎn)A作AB∥x軸,AC∥y軸,分別交反比例函數(shù)y=的圖象于點(diǎn)B,C,連接BC,E是BC上一點(diǎn),連接并延長(zhǎng)AE交y軸于點(diǎn)D,連接CD,則SDEC﹣SBEA=_________

查看答案和解析>>

同步練習(xí)冊(cè)答案