如圖,CA⊥AB,垂足為點A,AB=12,AC=6,射線BM⊥AB,垂足為點B,一動點E從A點出發(fā)以2厘米/秒沿射線AN運動,點D為射線BM上一動點,隨著E點運動而運動,且始終保持ED=CB,當點E經過 ____________ 秒時,△DEB與△BCA全等.
科目:初中數(shù)學 來源: 題型:
9 | 8 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2013年海南省?谑兄锌紨(shù)學模擬試卷(二)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,△內接于⊙,點在的延長線上,sinB=,∠CAD=30°⑴求證:是⊙的切線;⑵若,求的長。
【解析】(1)連接OA,由于sinB=,那么可求∠B=30°,利用圓周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等邊三角形,從而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切線;
(2)由于OC⊥AB,OC是半徑,利用垂徑定理可知OC是AB的垂直平分線,那么CA=CB,而∠B=30°,則∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函數(shù)值可求AE,在Rt△ADE中利用30°的銳角所對的直角邊等于斜邊的一半,可求AD.
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年福建省廈門市翔安區(qū)九年級適應性考試數(shù)學卷(解析版) 題型:填空題
如圖,△內接于⊙,點在的延長線上,sinB=,∠CAD=30°⑴求證:是⊙的切線;⑵若,求的長。
【解析】(1)連接OA,由于sinB=,那么可求∠B=30°,利用圓周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等邊三角形,從而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切線;
(2)由于OC⊥AB,OC是半徑,利用垂徑定理可知OC是AB的垂直平分線,那么CA=CB,而∠B=30°,則∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函數(shù)值可求AE,在Rt△ADE中利用30°的銳角所對的直角邊等于斜邊的一半,可求AD.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com