【題目】ABC中,∠ACB90°,tanB,AB5,點(diǎn)O為邊AB上一動(dòng)點(diǎn),以O為圓心,OB為半徑的圓交射線BC于點(diǎn)E,以A為圓心,OB為半徑的圓交射線AC于點(diǎn)G

(1)如圖1,當(dāng)點(diǎn)E、G分別在邊BCAC上,且CECG時(shí),請(qǐng)判斷圓A與圓O的位置關(guān)系,并證明你的結(jié)論;

(2)當(dāng)圓O與圓A存在公共弦MN時(shí)(如圖2),設(shè)OBxMNy,求y關(guān)于x的函數(shù)解析式,并寫出定義域;

(3)設(shè)圓A與邊AB的交點(diǎn)為F,聯(lián)結(jié)OE、EF,當(dāng)△OEF為以OE為腰的等腰三角形時(shí),求圓O的半徑長(zhǎng).

【答案】(1)A與圓O外切,理由見解析;(2)y(x5);(3)當(dāng)△OEF為以OE為腰的等腰三角形時(shí),圓O的半徑長(zhǎng)為5

【解析】

1)由三角函數(shù)得出AC3,BC4,作OPBEP,則PBPE,OPAC,得出,設(shè)PBPEx,則CGCE42x,得出OBx,AGACCG2x1,得出方程,得出x,OB,求出OAABOB2OB,即可得出結(jié)論;

2)連接OM,由相交兩圓的性質(zhì)得出OAMN垂直平分,∠ODM90°,DMMNy,ADOD5x),由勾股定理得出方程,整理即可;

3)分三種情況:當(dāng)圓O與圓A外切,OEOF時(shí),圓O與圓A外切,圓O的半徑長(zhǎng)OB;

當(dāng)OEFE時(shí),圓O與圓A相交,作EHOFH,則OFOHOB,證明△BEH∽△BAC,得出EH,在RtOEH中,由勾股定理得出方程,解方程即可;

當(dāng)OA重合時(shí),OEOFOEAB5;即可得出結(jié)論.

(1)A與圓O外切,理由如下:

∵∠ACB90°,tanB,AB5,∴AC3BC4,

OPBEP,如圖1所示:

PBPE,OPAC

,

設(shè)PBPEx,則CGCE42x,

解得:x

OB,

OAABOB52OB

∴圓A與圓O外切;

(2)連接OM,如圖2所示:

∵圓O與圓A存在公共弦MN,

OAMN垂直平分,

∴∠ODM90°,DM

由勾股定理得:DM2OM2OD2,即

整理得:y23x2+10x25,

y;

(3)分三種情況:

當(dāng)圓O與圓A外切,OEOF時(shí),圓O與圓A外切,圓O的半徑長(zhǎng)OB;

當(dāng)OEFE時(shí),圓O與圓A相交,如圖3所示:

EHOFH,則OFOHOB,

∵∠B=∠B,∠EHB90°=∠C,

∴△BEH∽△BAC,

EH,

RtOEH中,由勾股定理得:OE2OB2,

解得:OB

當(dāng)OA重合時(shí),OEOFFB重合,OEAB5;

綜上所述,當(dāng)△OEF為以OE為腰的等腰三角形時(shí),圓O的半徑長(zhǎng)為5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,BC4,⊙P與△ABC的邊或邊的延長(zhǎng)線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長(zhǎng)為( )

A.8B.10C.13D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+m+1x軸于點(diǎn)Aa,0)和Bb,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)命題:

當(dāng)x0時(shí),y0;

a=﹣1,則b4;

拋物線上有兩點(diǎn)Px1,y1)和Qx2,y2),若x11x2,且x1+x22,則y1y2

點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為E,點(diǎn)G,F分別在x軸和y軸上,當(dāng)m2時(shí),四邊形EDFG周長(zhǎng)的最小值為6

其中真命題的序號(hào)是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D是△ABC的邊AB上一點(diǎn),點(diǎn)EAC的中點(diǎn),過點(diǎn)CCFABDE延長(zhǎng)線于點(diǎn)F

1)求證:ADCF

2)連接AF,CD,求證:四邊形ADCF為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB5,BC12,將矩形繞著點(diǎn)D順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)C落在對(duì)角線BD上的點(diǎn)E處時(shí),點(diǎn)A、B分別落在點(diǎn)G、F處,那么AGBFCE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDABH,G為⊙O上一點(diǎn),連接AGCDK,在CD的延長(zhǎng)線上取一點(diǎn)E,使EG=EK,EG的延長(zhǎng)線交AB的延長(zhǎng)線于F

1)求證:EF是⊙O的切線;

2)連接DG,若ACEF時(shí).

①求證:KGD∽△KEG;

②若cosC=AK=,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O外一點(diǎn),且∠CAB90°,BD是⊙O的弦,BDCO

1)請(qǐng)說明:CD是⊙O的切線:

2)若AB4BC2.則陰影部分的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富校園文化生活,促進(jìn)學(xué)生積極參加體育運(yùn)動(dòng),某校準(zhǔn)備成立校排球隊(duì),現(xiàn)計(jì)劃購(gòu)進(jìn)一批甲、乙兩種型號(hào)的排球,已知一個(gè)甲種型號(hào)排球的價(jià)格與一個(gè)乙種型號(hào)排球的價(jià)格之和為140元;如果購(gòu)買6個(gè)甲種型號(hào)排球和5個(gè)乙種型號(hào)排球,一共需花費(fèi)780元.

1)求每個(gè)甲種型號(hào)排球和每個(gè)乙種型號(hào)排球的價(jià)格分別是多少元?

2)學(xué)校計(jì)劃購(gòu)買甲、乙兩種型號(hào)的排球共26個(gè),其中甲種型號(hào)排球的個(gè)數(shù)多于乙種型號(hào)排球,并且學(xué)校購(gòu)買甲、乙兩種型號(hào)排球的預(yù)算資金不超過1900元,求該學(xué)校共有幾種購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB繞著點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)120°得到線段AC,點(diǎn)B對(duì)應(yīng)點(diǎn)C,在∠BAC的內(nèi)部有一點(diǎn)PPA8,PB4,PC4,則線段AB的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案