【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)求證:CD2=CACB;
(2)求證:CD是⊙O的切線;
(3)過(guò)點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,若BC=12,tan∠CDA= ,求BE的長(zhǎng).
【答案】
(1)解:證明:∵∠CDA=∠CBD,∠C=∠C,
∴△ADC∽△DBC,
∴ = ,即CD2=CACB;
(2)解:證明:如圖,連接OD.
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠1+∠3=90°.
∵OA=OD,
∴∠2=∠3,
∴∠1+∠2=90°.
又∠CDA=∠CBD,即∠4=∠1,
∴∠4+∠2=90°,即∠CDO=90°,
∴OD⊥CD.
又∵OD是⊙O的半徑,
∴CD是⊙O的切線;
(3)解:解:如圖,連接OE.
∵EB、CD均為⊙O的切線,
∴ED=EB,OE⊥DB,
∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°,
∴∠ABD=∠OEB,
∴∠CDA=∠OEB.
而tan∠CDA= ,
∴tan∠OEB= = ,
∵∠ODC=∠EBC=90°,∠C=∠C,
∴Rt△CDO∽R(shí)t△CBE,
∴ = = = ,
∴CD=8,
在Rt△CBE中,設(shè)BE=x,
∴(x+8)2=x2+122,
解得x=5.
即BE的長(zhǎng)為5.
【解析】(1)通過(guò)相似三角形(△ADC∽△DBC)的對(duì)應(yīng)邊成比例來(lái)證得結(jié)論;(2)如圖,連接OD.欲證明CD是⊙O的切線,只需證明OD⊥CD即可;(3)通過(guò)相似三角形△EBC∽△ODC的對(duì)應(yīng)邊成比例列出關(guān)于BE的方程,通過(guò)解方程來(lái)求線段BE的長(zhǎng)度即可.
【考點(diǎn)精析】關(guān)于本題考查的切線的判定定理和相似三角形的判定與性質(zhì),需要了解切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑, ,∠COD=32°,則∠AEO的度數(shù)是( )
A.48°
B.51°
C.56°
D.58°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知函數(shù)y= (x>0)的圖象經(jīng)過(guò)點(diǎn)A、B,點(diǎn)B的坐標(biāo)為(2,2).過(guò)點(diǎn)A作AC⊥x軸,垂足為C,過(guò)點(diǎn)B作BD⊥y軸,垂足為D,AC與BD交于點(diǎn)F.一次函數(shù)y=ax+b的圖象經(jīng)過(guò)點(diǎn)A、D,與x軸的負(fù)半軸交于點(diǎn)E
(1)若AC= OD,求a、b的值;
(2)若BC∥AE,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=10,BC=12,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),按A→B的方向在AB上移動(dòng),動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),按B→C的方向在BC上移動(dòng)(當(dāng)P點(diǎn)到達(dá)點(diǎn)B時(shí),P點(diǎn)和Q點(diǎn)停止移動(dòng),且兩點(diǎn)的移動(dòng)速度相等),記PA=x,△BPQ的面積為y,則y關(guān)于x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y= x的圖象交于點(diǎn)A、B,點(diǎn)B的橫坐標(biāo)是4.點(diǎn)P是第一象限內(nèi)反比例函數(shù)圖象上的動(dòng)點(diǎn),且在直線AB的上方.
(1)若點(diǎn)P的坐標(biāo)是(1,4),直接寫出k的值和△PAB的面積;
(2)設(shè)直線PA、PB與x軸分別交于點(diǎn)M、N,求證:△PMN是等腰三角形;
(3)設(shè)點(diǎn)Q是反比例函數(shù)圖象上位于P、B之間的動(dòng)點(diǎn)(與點(diǎn)P、B不重合),連接AQ、BQ,比較∠PAQ與∠PBQ的大小,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC內(nèi)接于⊙O,D是 上一點(diǎn),OD⊥BC,垂足為H.
(1)如圖1,當(dāng)圓心O在AB邊上時(shí),求證:AC=2OH;
(2)如圖2,當(dāng)圓心O在△ABC外部時(shí),連接AD、CD,AD與BC交于點(diǎn)P,求證:∠ACD=∠APB;
(3)在(2)的條件下,如圖3,連接BD,E為⊙O上一點(diǎn),連接DE交BC于點(diǎn)Q、交AB于點(diǎn)N,連接OE,BF為⊙O的弦,BF⊥OE于點(diǎn)R交DE于點(diǎn)G,若∠ACD﹣∠ABD=2∠BDN,AC=5 ,BN=3 ,tan∠ABC= ,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn)甲乙兩種商品,甲的進(jìn)貨單價(jià)比乙的進(jìn)貨單價(jià)高20元,已知20個(gè)甲商品的進(jìn)貨總價(jià)與25個(gè)乙商品的進(jìn)貨總價(jià)相同.
(1)求甲、乙每個(gè)商品的進(jìn)貨單價(jià);
(2)若甲、乙兩種商品共進(jìn)貨100件,要求兩種商品的進(jìn)貨總價(jià)不高于9000元,同時(shí)甲商品按進(jìn)價(jià)提高10%后的價(jià)格銷售,乙商品按進(jìn)價(jià)提高25%后的價(jià)格銷售,兩種商品全部售完后的銷售總額不低于10480元,問(wèn)有哪幾種進(jìn)貨方案?
(3)在條件(2)下,并且不再考慮其他因素,若甲乙兩種商品全部售完,哪種方案利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在方格紙內(nèi)將△ABC水平向右平移4個(gè)單位,再向下后平移1得到△A′B′C′.
(1)畫出平移后的△A′B′C′;
(2)畫出AB邊上的高線CD(利用三角板畫圖);
(3)畫出△ABC中AB邊上的中線CE;
(4)圖中AC與A′C′的關(guān)系是: ;
(5)△BCE的面積為 .
(6)若△A″BC的面積與△ABC面積相同,則A″(A″在格點(diǎn)上)的位置(除A點(diǎn)外)共有_________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】環(huán)保局對(duì)某企業(yè)排污情況進(jìn)行檢測(cè),結(jié)果顯示:所排污水中硫化物的濃度超標(biāo),即硫化物的濃度超過(guò)最高允許的1.0mg/L.環(huán)保局要求該企業(yè)立即整改,在15天以內(nèi)(含15天)排污達(dá)標(biāo).整改過(guò)程中,所排污水中硫化物的濃度y(mg/L)與時(shí)間x(天)的變化規(guī)律如圖所示,其中線段AB表示前3天的變化規(guī)律,從第3天起,所排污水中硫化物的濃度y與時(shí)間x成反比例關(guān)系.
(1)求整改過(guò)程中硫化物的濃度y與時(shí)間x的函數(shù)表達(dá)式;
(2)該企業(yè)所排污水中硫化物的濃度,能否在15天以內(nèi)不超過(guò)最高允許的1.0mg/L?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com