【題目】已知:△ABC內(nèi)接于⊙O,D是 上一點,OD⊥BC,垂足為H.
(1)如圖1,當(dāng)圓心O在AB邊上時,求證:AC=2OH;
(2)如圖2,當(dāng)圓心O在△ABC外部時,連接AD、CD,AD與BC交于點P,求證:∠ACD=∠APB;
(3)在(2)的條件下,如圖3,連接BD,E為⊙O上一點,連接DE交BC于點Q、交AB于點N,連接OE,BF為⊙O的弦,BF⊥OE于點R交DE于點G,若∠ACD﹣∠ABD=2∠BDN,AC=5 ,BN=3 ,tan∠ABC= ,求BF的長.

【答案】
(1)解:∵OD⊥BC,

∴由垂徑定理可知:點H是BC的中點,

∵點O是AB的中點,

∴OH是△ABC的中位線,

∴AC=2OH;


(2)解:∵OD⊥BC,

∴由垂徑定理可知:

∴∠BAD=∠CAD,

∴∠ABC=∠ADC,

∴180°﹣∠BAD﹣∠ABC=180°﹣∠CAD﹣∠ADC,

∴∠ACD=∠APB,


(3)解:連接AO延長交于⊙O于點I,連接IC,AB與OD相交于點M,

∵∠ACD﹣∠ABD=2∠BDN,

∴∠ACD﹣∠BDN=∠ABD+∠BDN,

∵∠ABD+∠BDN=∠AND,

∴∠ACD﹣∠BDN=∠AND,

∵∠ACD+∠ABD=180°,

∴∠ABD+∠BDN=180°﹣∠AND,

∴∠AND=180°﹣∠AND,

∴∠AND=90°,

∵tan∠ABC= ,BN=3 ,

∴NQ= ,

∴由勾股定理可求得:BQ= ,

∵∠BNQ=∠QHD=90°,

∴∠ABC=∠QDH,

∵OE=OD,

∴∠OED=∠QDH,

∵∠ERG=90°,

∴∠OED=∠GBN,

∴∠GBN=∠ABC,

∵AB⊥ED,

∴BG=BQ= ,GN=NQ= ,

∵AI是⊙O直徑,

∴∠ACI=90°,

∵tan∠AIC=tan∠ABC= ,

= ,

∴IC=10

∴由勾股定理可求得:AI=25,

連接OB,

設(shè)QH=x,

∵tan∠ABC=tan∠ODE= ,

,

∴HD=2x,

∴OH=OD﹣HD= ﹣2x,

BH=BQ+QH= +x,

由勾股定理可得:OB2=BH2+OH2,

∴( 2=( +x)2+( ﹣2x)2,

解得:x= 或x= ,

當(dāng)QH= 時,

∴QD= QH= ,

∴ND=QD+NQ=6 ,

∴MN=3 ,MD=15

∵M(jìn)D>

∴QH= 不符合題意,舍去,

當(dāng)QH= 時,

∴QD= QH=

∴ND=NQ+QD=4

由垂徑定理可求得:ED=10 ,

∴GD=GN+ND=

∴EG=ED﹣GD= ,

∵tan∠OED=

,

∴EG= RG,

∴RG= ,

∴BR=RG+BG=12

∴由垂徑定理可知:BF=2BR=24.


【解析】(1)OD⊥BC可知點H是BC的中點,又中位線的性質(zhì)可得AC=2OH;(2)由垂徑定理可知: ,所以∠BAD=∠CAD,由因為∠ABC=∠ADC,所以∠ACD=∠APB;(3)由∠ACD﹣∠ABD=2∠BDN可知∠AND=90°,由tan∠ABC= 可知NQ和BQ的長度,再由BF⊥OE和OD⊥BC可知∠GBN=∠ABC,所以BG=BQ,連接AO并延長交⊙O于點I,連接IC后利用圓周角定理可求得IC和AI的長度,設(shè)QH=x,利用勾股定理可求出QH和HD的長度,利用垂徑定理可求得ED的長度,最后利用tan∠OED= 即可求得RG的長度,最后由垂徑定理可求得BF的長度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標(biāo)為(﹣1,0),點C(0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.

(1)求拋物線的解析式;
(2)求△MCB的面積SMCB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣ x2+bx+c與x軸交于點A,B,與y軸交于點C,直線y=x+4經(jīng)過A,C兩點.
(1)求拋物線的解析式;
(2)在AC上方的拋物線上有一動點P.
①如圖1,當(dāng)點P運動到某位置時,以AP,AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點P的坐標(biāo);

②如圖2,過點O,P的直線y=kx交AC于點E,若PE:OE=3:8,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某花木公司在20天內(nèi)銷售一批馬蹄蓮.其中,該公司的鮮花批發(fā)部日銷售量y1(萬朵)與時間x(x為整數(shù),單位:天)部分對應(yīng)值如下表所示.

時間x(天)

0

4

8

12

16

20

銷量y1(萬朵)

0

16

24

24

16

0

另一部分鮮花在淘寶網(wǎng)銷售,網(wǎng)上銷售日銷售量y2(萬朵)與時間x(x為整數(shù),單位:天) 關(guān)系如圖所示.

(1)請你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與x的變化規(guī)律,寫出y1與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)觀察馬蹄蓮網(wǎng)上銷售量y2與時間x的變化規(guī)律,請你設(shè)想商家采用了何種銷售策略使得銷售量發(fā)生了變化,并寫出銷售量y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)設(shè)該花木公司日銷售總量為y萬朵,寫出y與時間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD2=CACB;
(2)求證:CD是⊙O的切線;
(3)過點B作⊙O的切線交CD的延長線于點E,若BC=12,tan∠CDA= ,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校是乒乓球體育傳統(tǒng)項目學(xué)校,為進(jìn)一步推動該項目的開展,學(xué)校準(zhǔn)備到體育用品店購買直拍球拍和橫拍球拍若干副,并且每買一副球拍必須要買10個乒乓球,乒乓球的單價為2元/個,若購買20副直拍球拍和15副橫拍球拍花費9000元;購買10副橫拍球拍比購買5副直拍球拍多花費1600元.
(1)求兩種球拍每副各多少元?
(2)若學(xué)校購買兩種球拍共40副,且直拍球拍的數(shù)量不多于橫拍球拍數(shù)量的3倍,請你給出一種費用最少的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(列方程(組)及不等式解應(yīng)用題)
春節(jié)期間,某商場計劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品2件和乙商品3件共需270元;購進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富學(xué)生課外小組活動,培養(yǎng)學(xué)生動手操作能力,王老師讓學(xué)生把5m長的彩繩截成2m或1m的彩繩,用來做手工編織,在不造成浪費的前提下,你有幾種不同的截法( 。
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為調(diào)查本校學(xué)生周末平均每天做作業(yè)所用時間的情況,隨機(jī)調(diào)查了50名同學(xué),下圖是根據(jù)調(diào)查所得數(shù)據(jù)繪制的統(tǒng)計圖的一部分.

請根據(jù)以上信息,解答下列問題:

1)在這次調(diào)查的數(shù)據(jù)中,做作業(yè)所用時間的眾數(shù)是 ,中位數(shù)是 ,平均數(shù)是 ;

2)若該校共有2000名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計該校全體學(xué)生每天做作業(yè)時間在3小時內(nèi)(含3小時)的同學(xué)共有多少人?

查看答案和解析>>

同步練習(xí)冊答案