考點(diǎn):相似三角形的判定與性質(zhì),正方形的性質(zhì)
專題:
分析:設(shè)AP=xcm,含x的代數(shù)式表示y(cm
2),求出y和x的函數(shù)關(guān)系式,要分四種情況進(jìn)行討論:
①當(dāng)N在D點(diǎn)或D點(diǎn)左側(cè)時(shí),當(dāng)正方形PQMN的邊MN與矩形EDBF的邊ED重合時(shí),利用相似三角形的性質(zhì)可得出x=
,即0<x≤
時(shí),此時(shí)正方形與矩形沒(méi)有重合,因此y=0;
②當(dāng)N在D點(diǎn)右側(cè),而P點(diǎn)在D點(diǎn)左側(cè)或與D點(diǎn)重合時(shí),即
<x≤4,此時(shí)正方形與矩形重合的面積應(yīng)該是以DN為長(zhǎng),NM為寬的矩形,DN=PN-PD=PN-(AD-AP)=x-(4-
x)=
x-4.而NM=PQ=
x,因此重合部分的面積應(yīng)該是y=(
x-4)×
x=
x
2-2x;
③當(dāng)P在D點(diǎn)右側(cè),而N點(diǎn)在B點(diǎn)左側(cè)或與B點(diǎn)重合時(shí),即4<x≤
時(shí),此時(shí)正方形重合部分的面積應(yīng)該是以正方形邊長(zhǎng)為長(zhǎng),DE為寬的矩形的面積,PN=
x,DE=2,因此此時(shí)重合部分的面積是y=
x×2=x;
④當(dāng)P在B左側(cè)時(shí),而N點(diǎn)在AB延長(zhǎng)線上時(shí),即
<x<8時(shí),此時(shí)重合部分的面積應(yīng)該是以DE長(zhǎng)為寬,PA長(zhǎng)為長(zhǎng)的矩形的面積.BP=AB-AP=8-x,BF=DE=2,因此此時(shí)重合部分的面積應(yīng)該是y=(8-x)×2=16-2x.再把將y=2代入(2)的式子中,看看求出的x哪個(gè)符合條件即可.
解答:解:設(shè)AP=xcm,則
①當(dāng)N在D點(diǎn)或D點(diǎn)左側(cè)時(shí),當(dāng)正方形PQMN的邊MN與矩形EDBF的邊ED重合時(shí),利用相似三角形的性質(zhì)可得出x=
,即0<x≤
時(shí),此時(shí)正方形與矩形沒(méi)有重合,因此y=0;
②當(dāng)N在D點(diǎn)右側(cè),而P點(diǎn)在D點(diǎn)左側(cè)或與D點(diǎn)重合時(shí),即
<x≤4,此時(shí)正方形與矩形重合的面積應(yīng)該是以DN為長(zhǎng),NM為寬的矩形,DN=PN-PD=PN-(AD-AP)=x-(4-
x)=
x-4.而NM=PQ=
x,因此重合部分的面積應(yīng)該是y=(
x-4)×
x=
x
2-2x;
③當(dāng)P在D點(diǎn)右側(cè),而N點(diǎn)在B點(diǎn)左側(cè)或與B點(diǎn)重合時(shí),即4<x≤
時(shí),此時(shí)正方形重合部分的面積應(yīng)該是以正方形邊長(zhǎng)為長(zhǎng),DE為寬的矩形的面積,PN=
x,DE=2,因此此時(shí)重合部分的面積是y=
x×2=x;
④當(dāng)P在B左側(cè)時(shí),而N點(diǎn)在AB延長(zhǎng)線上時(shí),即
<x<8時(shí),此時(shí)重合部分的面積應(yīng)該是以DE長(zhǎng)為寬,PA長(zhǎng)為長(zhǎng)的矩形的面積.BP=AB-AP=8-x,BF=DE=2,因此此時(shí)重合部分的面積應(yīng)該是y=(8-x)×2=16-2x,
當(dāng)
<x≤4時(shí),如果y=2,2=
x2-2x,解得x=
或x=
(舍去);
當(dāng)4<x≤
時(shí),如果y=2,x=2,也不符合題意,
當(dāng)
<x<8時(shí),如果y=2,2=16-2x,解得x=7,因此當(dāng)AP=7cm時(shí),y=2cm
2.
∴當(dāng)x=7cm或x=
cm時(shí),y=2cm
2.
故答案為:AP=7cm或
cm.
點(diǎn)評(píng):本題主要考查了直角三角形的性質(zhì),正方形的性質(zhì),中位線定理以及解直角三角形的應(yīng)用等知識(shí)點(diǎn),要注意x的值不同,正方形的位置不同時(shí),函數(shù)解析式是不同的,要分類討論,不要漏解.