【題目】如圖,為線段上一動點(不與、重合),在同側分別作等邊和等邊,與交于點,與交于點,與交于點,連接,以下五個結論:①;②;③;④;⑤,恒成立的結論有( )
A.①③⑤B.①③④⑤C.①②③⑤D.①②③④⑤
【答案】C
【解析】
①根據(jù)全等三角形的判定方法,證出△ACD≌△BCE,即可得出AD=BE.
③先證明△ACP≌△BCQ,即可判斷出CP=CQ,③正確;
②根據(jù)∠PCQ=60°,可得△PCQ為等邊三角形,證出∠PQC=∠DCE=60°,得出PQ∥AE,②正確.
④沒有條件證出BO=OE,得出④錯誤;
⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正確;即可得出結論.
解:∵△ABC和△CDE都是等邊三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD和△BCE中,,
∴△ACD≌△BCE(SAS),
∴AD=BE,結論①正確.
∵△ACD≌△BCE,
∴∠CAD=∠CBE,
又∵∠ACB=∠DCE=60°,
∴∠BCD=180°-60°-60°=60°,
∴∠ACP=∠BCQ=60°,
在△ACP和△BCQ中,,
∴△ACP≌△BCQ(AAS),
∴CP=CQ,結論③正確;
又∵∠PCQ=60°,
∴△PCQ為等邊三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE,結論②正確.
∵△ACD≌△BCE,
∴∠ADC=∠AEO,
∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,
∴結論⑤正確.沒有條件證出BO=OE,④錯誤;
綜上,可得正確的結論有4個:①②③⑤.
故選擇:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,大樓AB右側有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上),已知AB=80 m,DE=10 m,求障礙物B,C兩點間的距離.(結果精確到0.1 m)(參考數(shù)據(jù): ≈1.414,、≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了取得扶貧工作的勝利,某市對扶貧工作人員進行了扶貧知識的培訓與測試,隨機抽取了部分人員的測試成績作為樣本,并將成績劃分為四個不同的等級,繪制成不完整統(tǒng)計圖如下圖,請根據(jù)圖中的信息,解答下列問題;
(1)求樣本容量;
(2)補全條形圖,并填空: ;
(3)若全市有5000人參加了本次測試,估計本次測試成績?yōu)?/span>級的人數(shù)為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD中,點E在CD上,點F在AB上,連接AE、CF、DF、BE,∠DAE=∠BCF.
(1)如圖1,求證:四邊形DFBE是平行四邊形;
(2)如圖2,若E是CD的中點,連接GH,在不添加任何輔助線的情況下,請直接寫出圖2中以GH為邊或以GH為對角線的所有平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點F在邊AC上,并且CF=1,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)分別填在表示它所在的集合里:
12,,,,
(1)正數(shù)集合:{ }; (2)負數(shù)集合:{ };
(3)整數(shù)集合;{ }; (4)分數(shù)集合:{ }.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=24厘米,BC=16厘米,點D為AB的中點,點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.當點Q的運動速度為_______厘米/秒時,能夠在某一時刻使△BPD與△CQP全等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com